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Abstr_c_

An architecture _s pres_.mted for combining rule-based and case-based reasOn|hOg. The archi_ect, urt:

is intended for domain.q that are under--rood _ea_.onab]y well but still imperfect|.,;, it use,_ a set

of rul_;, which t_re taken t.o be only approximately J'orrect, to obtain a prelin_inary ang_'er for a

given prob|em; it. then draws analogies froltl ca,qes to ha_dl,: exeeptiot_s to tile rules. Having rules

gogcther with ca_.es not only increases t,he architeeture's dornai_l coverage, it also a|lows innovntive

ways of. doing c,_e-ba._ed r,'.a._onir_g: the s_me rul_, t]l_. a_e used for rul(:-b_._ed re;_._omng _r_: also

used by the ca_e-ba2;ed component, to do case indexing and ease adaptation. The architecture was

applied to the task of narr_e pronunciation, m_d, with minimal knowJed_;e engineering, wa._ found

to perform almo:;t at the level of the b_t ,:orr_mcrci,.l systems Moreover, its accuracy was fou'nd

to exceed what, it, could have achieved with rules or c_<:s alone, thus demonstrat, il_g Lhe accuracy

improvement, afforded by c_._mbining rule-based and case-based reasoning.
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1 Introduction

Domains vary in the degree _o which they are undc:rstood: ranging from those that have be 'n codified

completely and correctly in terms of t, set of rule.-: of behavior, to those for "xhid_ no such rules are

known. This paper is concerned wi_h domains that fall between these t.wo extremes, but. closer to the

"well understood" end .-- domains for _'hid_ a s;et of rules is knowu, but the rules do not cover the full

complexities of the domain. The _ul0:s must also be able to be run effic.iently. In such domain,:, rules

and cases bol.h provide valuable knowledge. While the rules embody the undetstanding that has been

codified over the years by experts, _.as(.s contain knowledge of the domain in a more unprocessed

form -- illustratioris of actual behaviors that occur in the domain, complete wilh idiosyncrasies

and irregularities. Neither go_rco subm_mes the other -- tl, e codified knowledge in the rules is not

necessarily well-r.epresented by any given set of cases, while the idios.yncratic knowledge in the cases is

not aeces.,;arily captured by known rules. This observation is the basis for the architecture presented

here for combining rule-ba_sed reasoning (RBR.) [Hayes-Roth el al., 1983] and case-.ba,,:ed reasoning

(CBR) [Kolodner, 199a; Riesbeck and Schank, 1989]. The architecture uses a set of rules, which are

taken to be only approximately correct, to obtain a preliminary answer for a given problem; it then

draws analogiez from case.'; to handle exceptions to the rules.

Having rules together with the c,_es not only allows the architecture to lake advantage of more

domain knowledge: it al_ allows innovatior,s in CBR technology. "]2he architecture incorporates two

novel methods for CBR that are based on exploiting the rules of _he RBR component. Fir.,_t. 1,he

rules are used to rode× the cases. The indexing sol,eros, termed pre&ct_on-based indering, hang.¢

cases directly off the rules, using the rule antecedents: to supply appropriate eu_ for ease retrieval.

This avoids having to analyze the domain to identify a suitable vocabulary of direct and derived

indexing feat_lr_;; instead, it t_ke_ advantage of the domain structure implicit in the rules, and hence

alr,-ady available. "lhe :_econd rob*. of _he rules in CBR is for c.,_e adaptation, _'ia. a t;trategy of "case

adaptation by factoring". The ruler are used to factor each source case into the individual steps

that were applied within the case: through a process of rational r_cons¢_'uctzon. "]?he individual steps

are then suffidently fne-grained that the relevant ones can be transferred ve.rbatim from murce to

target, despite over_:,i] disparities between the cases. Faer_oring is thus a way of adapting the source

ease to enable transfer to globally dissirnilar target c;t_es.

To tes_ the architecture for a real-world t_,k, i.t _as applied to the problem of name pronuncia-

tion. With minimal knowledge engineering, the resulting .qyste,'n. Anapron i, wv_ found to perform

a|rnost at the level of the be,;t commercial name-pronunciation s:,'stems, attd .,;ub.'_tantlally better

than other rnachine-lealning systems apphed to thin, task (t, wo versions of NETtalk). Moreover.

Anapron'.,. accuracy was found to exceed wh'tt it could have achieved with rules or c,'u;es alone

thus demonsl.rating th,: accuracy improvement afforded by combining rule.be.sod and ca*e-ba_d

re_onmg.

1Ant,pron =tand_, I'o_ Ar. alo_c_d _,r: _unciatinn ,."._tt.m.



The next section presents the architecture, independent of the domain of name pronunciation.

The Anapron sy-,;tem, which instant!ates tile architecture for name pronulzeiatiotl, i.-'.then described.

A set of experiments on Anapron are presented: the key result being an empirical demonstration of

the improvement obtained by combining rules and cases. The last two sections discuss zelated work,
and conclude.

2 The architecture

The architecture is organized as a set of modules tha.t can be configured according to the need.¢ of

the domain; t:ee Figure l. 'The minima] configuration consi:;ts of four modules, collectively termed

the core method, shown in the diagram enclosed in the gray inner rectangle. These four modules

are the heart of the archit, ecture -- t,hey implemen_ th.e method foc combining RBR and CBR.

The. re'.-aaining thzec modules, termed the supporJ, modules, perform various _oles in aequi_itag the

knowledge needed bv the core method. Each of the._e modules m;_y be included, on a domain-by-

domair, basis, as needed to make u.p the difference betw'een the k_aowledge needed by the core method

and the knowledge that is alre:ady available in the do_nain.

The. sections below' describe the core m,_thod of the architecture a,nd the support modules, fol-

lowed by a discussion of design i:_sues. For ease of e:¢posifion, e×,_.mples will be drawJ_ from a toy

(but implemented) tlomain: the iHstanti:_tioTt t,:, z:arne pronunciation is; deferred to Section :_.

2.1 The core method

'The core method i_ the heart of the al"ehiteerure; it i._the part that solves proMeme by _ corc,bivaatioz,

of B.BB_ and GBR. The central idea is to apply the rul_s to the target probtem to get an apI:,rox:imate

answer, and to draw an_logie.,; from cases _o cover exceptions to the rules. This idea i_ expressed

in the RC-H:_'brid procedure of Figure 2. The procedure _reats problem solving as a process of

applying operators t o the target 1)roblerrl until it is solved. The procedure applies one operator on

each iteral.ion. I_ chooses the operator in three steps. First it :;elects an operator _:o _pply via the

rules. It then looks for analogies |liar contradict the rule._ and suggest alternative operatoro In the

combination *top, it decide_ which operant.or to actually 0.pply -- the one suggested by RBR or one

t;uggested by CBR. Und.erlyin_, this s_rategy of starting with the _ules and fine-tuning with t,he ca.ses

is the assumption that a reasonably fast and accurate set _Z rule_ is available If not, a different

tsrchite,:ture may be called for, sudl _ts one that applies CBTt and I_.BR i_ the opposite order.

The core method gets its domain knowledge from four sources: a weak theory of the domain, a

case. library, _ ._imilarit._ metric and a set of thre_:lmlds. The _eal_ theory i:; a method for solving

problems in the <lomair, using a t;et of rules. It has two c_mponent, s: l,he rules themselves, and a

s_et of operators. The oper:,tor_ define th* lc.gal actions m the domain Each op,_rator may have an

_sociated applicability cot_dition _ha.t li_,its the _t of s_ates in wind, it car, be apphed. The rules

proride search control specifying e×actly ot, e Ol,eratc_r I,:, al,ply it_ every pr_._blem-._olving state. A

_eak theory is u:eal: in the sel_._e that it doe._ not always: _ugge_t the righl operator to apply -- if
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for combining: RBR and CBP_: the gray inner rectangle enclose,; the core method. Boxes repre._ent
modules of the architect, urn., and icon_ sl.and for knowledge _truch_e.¢. Links ir, dicate dependencies
betwee_l components.
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Procedure EO-Hybrid(probh:m)

Until problem is solved do:

(a) RBR: Use the rules to select, an operator to at ply.

(b) CBR.: Look for a.nalogies that contradict the opeta_,or suggested by RBI_..

(c) Combination: Dcddc between t,he operators suggested by RBI_ "rod CBR.

Figure 2: Top--level procedure for combining rule-baaed and case-based re_oning.

it (lid, there wo_ald be no reason to apply the architecture in the first place. In fact, even if the

weak theory doc_; not conta,.n the right operator to apply, the architecture may be able to recover by

applying Theory Extension, which detects such rni_sing operators by notating :failure,. of the weak

theory to account for examples in the c_.se library, and which invents new operators (and rules) to

correct, the failures (see Section 2.2.2).

As an example of a weak theory, consider a toy version of a. problem in auto insurance: to

ass_ the risk of in,nring a new client. Solving a problem in this domain consists of three steps:

determining whether the client i." an attentive driver, determining whether he 2 is in a hostil,. _ driv-

ing environment, and, b_:ed on the. previou._ inference:;, as._essing hi._ level of risk. Each ._tep is

implemented by applying one of a eorrespon'3ing set. of operators. For example, the: fir.,:t step --

determining whether the client: c, i:, a_ attentive driver -- is implemented by applying either the

attacheS.v, or i_att:er,_ive operator. The former adds the assertion attentive(c) to the state, while

tl,e Tatter adds the opposite __ssertion. Applicability condition_ control the order in which operator.=

are applied; fbr ,_xample, attentive and inattentive are cot_strained to apply only in the ini*:ial

state. The weak theory is summarized in Figure 3.

The next knowledge source needed by the core method is the case library. It is a collection of

cases, where a case ¢xJn._:ist_,_of a problem, it:_ an_','r, and the chain of operator_ by which the answer

w_; derived. In the insurance domain, a case translate_ m_o a client, the client's level of risk, a.nd

the opera_or_ that derived that level off risk f¢_r that client The client is represented as a feature

vector. Figure 4 gives [tn exampl.? of a prol,len, and two ca_es in this domain. The full case library

in t.hi_ toy example ha._ 30 _,x,_e_

The last two knowledge s*zuctures required by the ,:or,: method ai'c the similarity ntetric ,nd

thres_.._lds, The similad:y metric estimat.._ how similar two problems are with respect to the ap-

plication t_t"a particular Ol,er_tor. The thresholds are used by the combination module ia deciding

whether an analogs should override the rules The_e are both discu,s,:d further Lelow

The individual module,; in the. core method are pre_er_ted i_, the fol]otving sections.

2k|_,culJn¢ _,,ronouu_ are intended in the generic **n_* _mb-t_ th,- c,_ntex! indicatet ot]terwlue.
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Operators

attent?.ve e_dangered high-risk
inattentive < neutr_l < medium-r isk

low-risk

R_u1e-s

If occupa.tion(c) = student then attentive

el._elf sex:(c) = M and _ge(c) < 30 then _.nattentive

ek';elf age(c) > 65 then inattentive

e|_;e a._te.nt:Lye

If address2(c) =: New York, NY

or ad:lress2(c) :: L_s Angeles: CA then endm_gered
else neutral

If inatten.live(c) and endangered(c) then high-zzsk

eIseif ina.ttentive(c) or endangered(c) then m.dium-.riak
else lo_-'risk

; 'Student' rule

; 'Young driver' rule

; 'Old driver' rule

; 'Default' rule

; 'ltos:tile traffic' rule

; _Norrnai traffic" rule

; 'lligh: rule

; M.dmm rule

; 'Low' rule

O Figure 3: Weak theory for _,be toy aut.o-inc;nr,_.nge example. The less-than sign.,, (<) bet_;een oper-

ators repleseat ;_pplicabili_v conditions that control the order in which the operator:: are applied
The letter e in _he rules stands for a client,

0

Q

0

Target Case # 1 Case #6

Name Smit.h Johnson Davis

Addressl Sign|a Chi House Sigma (;hi ltonse Toyon Ball

Address2 Stanford, CA Stanford, C:A $tanfc,rd_ CA

Sex M M F

Age 21 19 22

Occupation student student student

Car-make Chevrolet BM W Toyota

Car-value 2,50!) 30,000 3,000

Auswer medi urn-risk(Johnson) Iow-ri:;k(Davi._)

Operator,.. inact ert_ iv e. attenl; lv e,

neu_ra2., _._eutral,

reed turn-.z iz3k low-r isk

@
Figure 4: A I;argel prolAem aud selected cases from the msuranc..-, c×ample.

@
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Procedure Index(case)

Until case is solved do:

(a) Use the rul_ to predict wbic.h operator ov should apply to case.

Let, r be the rule that made the prediction.

(b) Cc_mpare oe with the operat.or Oo that is observed to }lave been

applied to case.

(c) If the two operators are the sarne, store the cruse as a positive

exemplar of rule r, else as a negative exemplar.

(d) Proceed Lo apply operator Oo to case.

Fig.ure 5: Procedure for indexing a case.

t

O

Q

2.1.1 Indt;xi_l_;

The purpose of tile iTidexi ng module i._ to _rgz:.;ze the case:; to make them aece.'_sible late_' for CBR.

CBR will use rile cases to critique RBR: ,rases are therefore viewed as evidence fo_' ,_r against the

rules. A ease constitutes evidence [or a rule if it, illust.rates a place wheJ:e Lhe rule make'_ a correct

prediction. It const, itut, es evideuce agaznsl a rule if it _llm;trat,._ a place where the ruie makes an

incorrect prediction. The indexil_g module store._ the case as a positive or n egal_v_ ezemptar" of the

rule accordingly.

The complete indexing procedure for a case ks shown in Figure 5. It applies RBR. to the ca._e

as if it were a new problem. S_cp (c) does the a.ctual iud_.xing: it store_ the cast. as a positive or

negative exemplar of each rule thai, wn._ predicted to apply to it. Step (d) ¢omple_,e.¢ one iteration

of the procedure by applying an opcral.or to t.he case. It applies Oo. the obser_,ed opera,.or, c,o that

when the rules make ,0heir ne):t prediction (in ,,top (a)), it will be ba._ed on how the case was actually

solved, not on how the rule,; would have solved it. Applying the predicted _p_tator, %, would

be incorrect, because then if the rule_ predict one wrying operator at_ the beginninlL a.ll of their

subsequent predictions th:_t are ba._,:-d on this initial wrong operator will be throv,n off a_; well.

Once all of the cases have been inde×ed _.: described, they can bc u._ed a_ _ource exemplars for

analogies. "fhe indexed case_; will also, bc u._ed to help in judging analogical compellingness (see

Section 2.1.,1).

Given that l:he rules ._re not, e×pe<:ted to be perfect, one nt_ty ask how this indexing ._chcme

performs in the face of rule i_taccur;_cie:_. Con,_ider the situation where the architecture is presented

wit, h a t,arge_ problem, and the ,:ase library contains a :,ource probletn that is s_milar to the target

and has the :_ame behavior. Will the indexing sd_eme be able to rot,clove _h_s source? 'Yhc answvr i._

ye.,;, regardless c.f rule inaccuracies, as long as thu rul¢._ fire th_ _amc way for the source and target

problems This is likely, g,iven that the ._ource and tarse_ a.re !;imilar; the only way for t,he rule:_ to

differentiate between thorn i,; to test a ptoperl, y that i:_ both irrelevant to their behavior and not

shared between thorn. _fhus if the rules handle the _ourr,, correctly, the_" will fil_ it under" the ri_;hl,
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'Student' rule "Normal traffic' rule 'Medium" rule

Positive Negative Positive Negative Positive Negative

Johnson Johnson Johnson

g
Figure 6: Results of applying PBI to client Johnson. Johnson is stored a._ a positive or negative

exemplar of each of the _h,ee rules that make a prediction for him.
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rules, and retrieve it when thee rules fire again for the target problem. If the rules handle the source

incorrectly, they will file it und_,r the wrong rules, and retr.ieve it when these same wrong rules fire

for the target problem. In effee'_, the rules act az a h;_shing function: disl.ributing exernplar._ into

be:h.wior classe_ ba_ed on (weak) knowledge of the domain.

The indexing ._ch_-rne ju._t pro._ented is termed prc&clion-based mdezin# (PBI)because it indexes

ea._._ by the tulles t;hat predicted which operatora should apply -- regardless of whether the predic-

tions were correct Equivalen.tly_ it can be thought of eLs indexing c_._e.,_ by whatever featur,_ the rules

looked at, in order to make their p_edictions. This is related to e×planation-based indexing (EB])

[Bar]etta _nd Mart:, 198S}; however, there the rule._ are used to explain ax_ observed outcome, rather

than to make their own prediction of the out.rome. This diff_:rence results in quite distinct modes

of operation in the: two scheme_. EBI _qeeds to a¢cour, t for any ob.',crved answer, and thus work._

ba_:kward from the answer using correct_ rule applicationg. It prefers a th,_.ory that is as broad as

possible -_ one that can even account for multiple an._wers to the same problem (rendering the rules

nondet.erministic). PBI, on the oth_,r hand: applies the rules i_i the forward direction, allowing both

co:reel and incorrect rule appli<a_i:>ns It uses the same rules a_ for ordinary rule.hnsed reasoning,

rather than requiring one set for expledning answers and one sc:t fc,r performanc,. It prefers _ theory

that is a_. accerale as pos._,ibl,_-, to minimi_.c the amount of work the architecture will have to do later

to override wrong rule appliea_ion_ via CBR.

Example As an illu._tration of PBI, consider again the toy auto-insurance e×ample. F'BI applie:;

to the fir;st clies_t i_ the case library. Johnson, in three iteration._ "The re:mlrs are shown in Figure 6.

On the first iteration, the. rulc._ are applied, and th," 'stude.nt' rule fires. It predicts the .atteat.±ve

operator lot" Johnson. Ylds differs fro,n the operator specified in the c,'r_e, inatten_tv_ Johnson

is therefore utored as a negative exemplar of the 'st,|denl' rule Th_ in&xing procedure proceeds to

apply the obser_'ed operator, £natt,.,n_:ive, to Johns.zn. On the sots, rid iteration, the 'normal tra.|fi,:'

rule predict.,, nautral, which agr_e._ with the operat¢,r given in tb,: case. Johnson is made. a posi6w:

exemplar of the 'normal traffic" rule. (.lit the last ateration, l,he 'medium' rule correctly predicts the

opetat,ot taediua_-r_k, b;_e(l or, the a.ssertio:|s of the previr)n:: two operators. Johnson is therefore

stored as a positiv(: cxemp|a,.' of the 'medimr,' rule



2.1.2 RBR

Rule-based reasoning matches the rule.s again.'.t the target problem Rules can ma'.ch any attribute

oft.he problem-solving state, including a._sertions added by previous problem solving Rul_' matchmg

corresponds to step (a) of procedure RCHybrid. The mat(-]tmg rule is not actually apphed at this

point, but rather is taken as a prov;szonal rule that will only be applied later if not overridden b)

CBR.

Example Continuing _-ith the insurance examt;l_, sul,pc_,e .arget problem i_ tr, exaluat,, the

ri_k of insuring client Smith (see Figure .t). O_ the first Iteration of procedure I'/(:-H_brid the

'student' rule mat¢'aes and is selected as the provisiona', rule.

2.1.3 CBR

The CBR module acts as a critic of th_ RBR module It c,,rresponds to step (b) of prcw_dur, RC-

Hybrid. It tries to :_how tha_ the target problem is an exception of the provisional rule b v looking

for an analogy between the target problem :rod a negative e.xemplar of the rule. The nega'Ave

exemplars of the rule a_e available in a list hanging off the rule -- =his _as arranged b_ the ,,d_xu.g

schem,_. The CBR module goes do'_n this list. proposing anah_gies one at a Urne. un:il it run_ out

of exemplars, or the combina_.ion module judges one of the analogies to be ¢ompellmg 3

The actual proposing of analogi_ i,_ done by apt,lying the sn_,:]arit3 metric. The metric t_kes

three arguments a source problem, a target problem, an_ ai_ operator to be trar, sferred from so_ roe

to r.arget. Here _.he source problena _il] he a negatiw, exemplar, anti the op,'ratcr-to-t,e-tran_f_rre.-I

_ili be the operator that was applied to thi.,; exemplar. The operator establishes a cont.ext for

¢onaparing the problems. Given t,he,,:e three arguments, the metn( returns two values, a numerical

r_ting of the similarity, called the sirnzl_r_fy srorr and the iml:,lictt rule behind the analogy railed

the analogical rule or arule. The implicit rule that an)" analogy makes is l.hat a particular set of

features that were found to be in common between tl,e soarer and target problems determu,e.,, th*

same outcome for the two problems. Ac.cordingl2_, the left-hand side of the arule gives the fe.atures

that were judged by the metric to be shared by the t_'o problems, and the right-hand .sid_- g:ves the

operator-to-be-tran.,:ferred The ar, l¢_ will be u._ed f._r judging, wh_ther the analogy ,_ eomg..qling

(see Section 2.1/1).

Example Back to the incur;ere example, _.he RBR module hnsj,_._t proposed the "stndev.t' ruh a.,

the provisioaal rule for Smith The CBR module attempts to d,fea_ thi._ i_rc.l,osal b_ hket, mg SHfith

to previous nega_;ive exemplars of the- rule As was sho_-n above, dchn.,on _s one such negat we exem-

plaT. The CBR module draw.¢ an annlogy fl'om John,on to _;mith: with r_.sp,.el to ,he anatt,,nt iv,

Sit" there are muhiple comptlhug anah,g.i_ for ,'lifft',t nt operator_, t.hi_ prc,,'tdi,re _,,ll,,rll l, find th._ fir,, or_,. _'Fh¢

rationale is that lnU]tipl*. ¢omp,qling ^_al¢,[!i_ _implv indirat,_ multipl_, ae¢,_pt d',l,, ._.n, _.r, tk.o ehn,¢e ame.ng thegn _*

Jnlnu&terial. IJn practice, the issue _( ch,_o_ing a::toi,g niu_tJl.,]¢ (Omlvelhag aa_alogg_ wa_ [o_uld to b¢ _ainl,v_ta:d th,:

cttrlent procedta"_ ulrcady d,ru_',_ v,:ly |¢w i_r.orrct I a_,Mog_e_, (_cc Scetit.h .| 1 )1. lot luo,_,'r ;ll,.orl-,rt ,ttlal,±gr'_ _],¢_-

an Mternat]vc <'¢Oml:,elllng analogy would hnvc bee:, be, t¢_
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operator, by applying the similarity metric'. A similarity metric can, in general, be a_ simple or as

co_mplex a_ de._ired, ranging from simply counting identical features, to doing a relevance-weighted

feature comparison, to applying a full e×pert system for mcmcuring similarity. For the insurance

domain, a mer, ric at the simple end of the spectrum was chosen: it. counts the number of fields that

match in the two client structures (and it ignores the operator-to-be-transferred). Text fields are

considered to match if tht:y are identical. Numeric tields match if the two numbers fall within the

same interval of a predefined set of intervals. For the analogy fr¢ml Johnson to Smith. the metric

yields the. arule:

If addres_l(c) = Sigma Chi House and address2(c) = Stanford, CA

anci sex(c) = M and age(c) < 30 and occupati.on(c) := student

_hen J na'_ ten'tire.

T|iis z.rule expresses tt_e features shared by Johnson and Sntith according to the re,trio. The metric

return_ a ._imi]arity score of,5, which is the number of fields that match between Johnson and Smith

(and hence also the number of ccmditions in the arule).

2.t.4 C',ombinat io_

The combina.tion mod_|e implements step (c) of RC-||ybrid: it decides which of the other module._

to listen to, RBR or CBR. It. d_es thi._ by evaluating the analogi,_._ proposed by CBR. If it dec,ms

one of them tc_ be coTnpclting, then CBFL wins; else RBR wins. Decisions of cornpeliingnes_ are

baeed in par|. on. the similarity sc¢re of the analogy. The si_nilarity score is the degree lo which the

source and target p_obIems match on relevant attributes, and thu_ the degree to which the p_oblems

are expected to have (he same an._wer, according to the s)mi]arity metric Because the metric is

only _ heuri._tic, however, _he eombina)ion module does no( rely on i_ exclusively, it also subjee.ts

th(_ analogy to an empirical verification. This is a test of how well the arule -- the g_-nc:raliza_.ion

behind the analog), -- work._ for other e×emplars in the ca,_e library. The test returns twe resuILs:

the arule's a¢cui'acy, that is. the proportion of exemplars it got right; and th_ _igniticance of the

accura.cy rating, which is I minu¢ the probzhilit.v of getting that high an accuracy merely by chance.

The c_,lculation of these r_ults iz e×plained in more detail below.

Compellingne_s ca_ now be ¢'xpressed ester, tinily as a co_junclion of the two factors discu_._e.J

above: the analogy must have a high similarity sc,_re, and it mu_t perform well in the _.mpirical ver-

ification. The conjunction enat, les moro robust judgements of ('ompellingness. An analogy between

two apparently ,;imilar pr¢,biems will be rejected if the similarity )nrr,; out not to be predictive for

other examples; and an an.alogy l.hat _orks by '_purious coincidence on the available examples will be

rejected if there is not also a plausible similarity between it.,. sour¢o and target, q-he compellingness

of an analogy .,4 is defined more precisely ,_.¢k_llow_.

Cornpelling-p(A) ¢----_

_;imilarity-:,core(A) k SS0

and accuracy(A) >_ .40

mad (._ignificanc_(,4) > So or _.imilarity-_,e_re(.A) _ SS4.)

0



10

where SSo, SS+, A_, and Se are thresholds for deciding when a value is high enough; they tan be

provided from the outside: or _t by the Threshold Setting module (Section 2,.9.3). Thi._ definition

requir_ the analogy to be strong on all paramet¢-rs --- the score assigned by the similarity metric,

aim the accuracy and significance from the empirical verifi_'_tion. However, an _eape clause -- the

disjunct involving SS+ --- provide._ a tray of accepting analogieg between overwhelmingly similar

problems, even if there are not enough dat_ for a _.ignificant accuracy readirJg.

The calculation of the accuracy and sig; :ficance of an analogy will now be explained in more

detail. The first observation is thai; tb.- arulc may be viewed _ a specialization --- in particutar,

an _xception class ---of the pro_i_k, nal rule. It follows that. the arule applies only to a subset of

the exemplars (both negative and positive) of the provisional rule. It doe:, not apply to the rest

of the exemplars in the c,_e library. When the arule do_ apply to an exemplar, it wilt suggest

the application of the operator o on i_s right-hand side. This operator may or may not s.gree with

the operator that is ob:_erved to have bc_n applied to the exemplar. Several definitions can now be

made:

Let rtt = number of exemplars that the arule applie.'; to

and that were observed to have had operator o applied

n = total number of exemplar.,; that the arulc applies to

M = number of e×empla_s of the provisional rule

that were observed to have had operator o applied

N = total numbe:- of ¢xcmplar_; of the provi.qonal rule.

The accuracy of _he ar,_le is then givel_ by rn/Tz. A.q mentior, ed above, the significance is one minus

the probability, p, of getting that high an accur_a,-y merely by chance. In calculati_g p, a slight

correction is needed- The probability of getting m out of n exemplars right i._ influenced by the fact.

tha_ the arule was constr_ete9 to be right for one of the exetnpiar_ -- namely, the source case for

the analogy. The calculation of p therefore )retend:; that thi:; source case does not ¢xi.,4; Jt uses

m' = an-- 1 and n' = n--1 in place ofm and n Wil:h this in mind, p can be calculated using

Fishcr:s exact test [Fleiss, 19gl: p.25]:

p = prob(getting a_ lea.st m'/n' by chance)

= Z l',rob(gettir,g exactly k/n' by chance)

m'<_<,,

Unfortunately, Equati,,n 1 i.q computationally _lnpal,_table fc)rlarge value._ of N An approximation

is therefore used. It assumes that N is larg_ compared to ,', wMch is r,.-,'L_onahle for no,-triviabsized

case libraries Under this t_qsumption, the probabilities can be calculated as if the exemplars are

being drawn from an infinite population Thus tlw. pr_,babilis:y of getting on_ ex¢:mplar r|ght hy
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chalice is just equa} to the proportion of :;righr" exempla_-s in tile overall population -- namely.

1" ": M/N. The probability of getting k exemplars righl by chance will be r _ --- each exemplar ha_

the same probM_ility_ r: and the probabilities multiply. _Fhe revised derivation of p is then:

-- prob(get#.ing at least rn_/:,'z ' by chance)

= _ prob(gettirlg exactly k/n' by chance)
m'<_<.'

(,;)
,.' < r,.<.,d

(2)

Example Consider again the analogy from Johnson to Stair.h_ "l'o decide whether this ;_natogy is

compelling, the cor_hiuation moduh: first rnn'.- an empirical verification ]t te.';ts the arule oi_ the

po._itive and negative exernp!_rs ,3f the provisional 'student' rule. It happent; that, _he arule applies

to four of th_._e exemplars, Johns.on and three others. Three of th_ four are listed ,x_ 5hal:to,tin,.

Thus "rn := 3 and T_ = 4, giving an accuracy of 0.75. "l'urxtii_. to the 'student' rule as a whole, 4

oul. of 10 exemplars are li_ted as 5.na'cl;en't.5.w.*. So M --: 4, N -- J0, and r := 0.4. The significa_ce

of the acc.ura.cy rating then work._ o_t to be 0.648 b.v Equation 2. 4 Also, _s mentioned e_lier, 0.he

simila_it.v score of the _nalogy is 5. The thresk_Idz in this _lomam _ere seL fo _he values SS0 -- 4.

SS+ =: 6, A0 = 0.86, and So = 0..50 (see Section 2.2.3). Thus the analogy is deenaed compelling.

The upshot is that Srtfidl is deter_rfined to be inert.entice, by analogy to a similar inattentive student

from the same fraternity. A_suming that no e.om.pelling a_alogies are found in the balance of ¢he

problem solving, $mi_.h will uttimat.e]y be asse:_sed as medium risk, rather- than low risk m< th- rules

alone would have predicted].

2.2 The support modules

The knowledge '..tructures required by the core method may not be readily available in a[l domains.

The role of the .,_upport modules is to help eoi_struct these knowledge structure.,:. E;ach of the three

support modules deals with a particular issue in the const|:uc! ion. The first, Ratic, na[ Reconstruction,

deals with t,be issue that whi,e a set of problem/_.nswer pairs may be available for the domain, t,he

path by which each answ,_r was derived may not be -- but tho.._- paths are needed by the core

method _ part of the ,:a_e library. Rational Reconstruct io_, use_ the wea.k theory _.o infer the path

of operators leading_ from _._ach problem to its ._n._v.'er.

The se_cortd support, m,_dule, Th_:ory Extension. denis with the i._u_, that the. weak theory may

have gaps tha{ prevetR Hr." abovement.ioned reconstructions from goiug tl,rough. When such a gap

is exposed Theory Ext.ens_on prc,po._es plausih],, new operator,_ or rules r.o add to the weak the_ry

to bridge the gap.

4"['*O; ¢OlllpiIl'i$Oll, Fi$h_21 'l exact test ill _qutati_u 1 _x, ul_l hay,., gi_(.tl 0 667, tic. dJ_¢v..i,ancy i_ noticcnb[e I.,e,._us,.

N i_ so _mnll it, this toy ex_ml,le.

O
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The t|:ird support module, Threshold Setting, deals with the issue that there may not be prede-

fined values t,o use for the four thresholds in r, he definition of a.nalogic.._.l compellingness. Threshold

Setting chooses values via a learning procedure that generates training examples for ilself from the

case library.

The support modules effectiw_ly reduce the knowledge requirements of tile archilecture to three:

a weak tlleory., a set of problem/an.twit pair_, and a similarity metric Rational Re.construction

and Theory Extension have hooks to incorpnrate supplemental domain knowledge if desired, as

discus:red below. The foh,_v:ing sections briefly describe tile three suppor'o modules. A more complete

description can be found in Gelding [1991]

2.2.1 Rational recotastruction

Examples of prohlem_ and their answers are availabl,- in many domains --- spellings and their pho-

netic transcriptions in pronunciation, patients and their diagnoses in medicine: thex)rems and their

proofs in ma_hematic._: etc:. Whrtt tends to, be. not so widely available is the. chain of reasoning by

which each ansior was derived --experts have trouble articulating how they pronounced a name, or

arrived at a particular dial, nc>_;i.% or came up with a proof. Unf_rtnnately. without t.his information,

an answer is of rather limited use: it can only be applied to new problem_; in tot_. Any system that

wants to transfex just part of the answer to a new problem needs some way of breaking down the

answer into individual steps, The Rational Reconstruction module (Rt2) provid_ a way of doing

this. Given a problem and an answer -- and using a weak theory of the domain -- RR, infers an

operator sequence that leads from the prot,lem to th_ answer.

Ratio_al :reconstruction c_tn be viewed as a problem of searc]l for an operator sequence. The

operators in r.h,': sequence are dra,wn from a weak theory of the domain. The _equence mltst satisfy

two constraints. First, it musl account for the given problem and answer:

I,'_lidity: ']'he operator sequence, when applied to the problem, mus_

produce tlm answer.

It may happen that no operator e.equence satisfies the validity constraint; this signals that the weak

theory is migsinl; one or more operators. In this c,_e, RR call._ Theory Extensior, to fill. the gap.

The opposite problem is when there are multiple valid operator sequences. Here, RK invoke_ t;he

ruDs of the weak theory a,; a blare' it prefers the operator sequence that is close:_t t.o wha_ the rules

would have predicted. The i&'a is that even though the rnles are not perfect, they are good enot_gh

to .,;reef RR _oward plausi_le derivations. This is ¢×pr_ssed in a second constraint:

Mirtimality: "Ihc operator sequence rnu.,;t deviate minimaliy from |,lie sequence

predicted by the rules of th_ weak theory.

This brings up a sec_nd opportunity for patching the weak _,heory: if R,R cannot find a valid operator

sequence with zero devi.ation, thb, meal,., that the n,le._ do not predict a valid opera.tot _equence for

the problem at i.,_ue. In such cases, l_.l[ may c:.tll Theory Exten:;ion to alt_.r the ,'ules such that they

do predict a valid operator sequence This option is rarely invoked, however, the primary approach

of the architecture is not t.a fix imperfect rules, but to sttpp'ement thorn with CBR.
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The two constrain_ above lead to two strategies for RR: the validity-first strategy, which gener-

ate_ valid operator _equenees and selects t.h,.- one with minima[ deviation; _nd the minimality-flrst

strategy, which generates operator sequences in order of increasing devia_.ion, and _elects the first

valid one. The devine, ion of an operator sequence i._ the gum of the deviatiovs of each of its operators,

where a deviation _netrie ,neasures the deviation of an operator. The default metric scores 0 if the

op_ralor agrees with tho one predicted by the _u!es, and 1 o0,erwi._e. The scoring can be made more

sophisticated by including doma.in-specific knowledge that penalizes deviations according to their

severity. The; validity-first and minimality-firs_ strategies, and combinations thereof, define a space

of poa_ible strategies fc_r doing RR. T}w particular strategy that, is best for a given domain depends

on a number of factorz, iqcluding _he accuracy of the _ule._ in. d_e domain. Pruning and oIdering

heuristics m_u be used in conjunction with either strategy to speed il vp.

A couple ofobsel'vations about F_R can be mad,_ at thi-_ point. The first is that RR can be regarded

as doing a form of credit assignment. In particular, suppo._e that RR is given a problem/answe_

pair that has several _-alid reconstruction.,;, each of which violates a di/ferent rule. Th_.n RR in

choosing among th_.se reczmstruetions, is implicitly doing credit a.';signment, as it is deciding which

rule violations ]_.otd. Moreover, it is doing the er,._dit assigmnent by invoking a minimalicy bia._ --

it :_ele,:ts the reconstruction _xith Lhe smaller to_al deviation from the rules. Put another way, it

assign:_ credit, so as to n_inimize _,he total amount of blame.

"]'he _econd observation ccncerns RR's effectiveness as a function of the d2rect_ess of the operator.q

in the weak theory. A direct cpelator affect s the final answer of a I)roblen_ by directly altering some

part of it. An i,..direc_ operat,_r doe.,: not manipulate the answe,r ir.._elf, but rather affects t,he choice

of other operators. Indirect operators tend to be harder to reconstruct, because' they arc relatively

uncon:;traine,:l by the a_swer. Rtt mu._t therefore rely more on its minim:_fity bi_ in reconstructing

them. This can be dangerou.,;, _'5 the minimaiity bi_ts i.,; (,rdy _ accurate a_; the rules of th( weak

theory. By and large, theref_re, the more direct the operators in the weak theory are, the more

effective RR will be.

There is a variety of work related to RR, including learning apprentice: plan reeognizer_, student-

modelling sy,;tems, and. story-under._tandmg _ystems. These syste,'ns all infer some kind of trace of

the reaso_aing behir_d an .age_at's observed behavior. Such systems typically enforce the validity

constraint; that is, they produce traxce,, that are co[lsisl:enl, with the observed behavior. "l-he dif-

fer(.ne(_ among syslems lie ir_ the bias they _se for chc, osing amo_ag the valid traeez. One _fimple

bias is to return the first vahd trace fc,und; this i.q the approach taken in PAM [Wilensky, 19_,3],

a atory-ur,derstanding syzlem. A. widely-u_ed bia_ is to prefer the" szmplfst valid trace -- i.e,, the

one that makes the fewest 0.s:mmption: _ a.s i_, for example, the plan-recognition work of Kautz

and Allen [1986]. The ACCEL system INs and .\'lo_,n*y, 1994], which h_s e.lso been used for plan

recognition, instead pre.fer_ the n_o_t cohcr.¢nt trace. CELIA [Redmond, 1992], a learning appren-

tice in the domain (,f automotive repair, l,rcfers the valid trace that i:; lhought to besl. capture the

hierarchical goal structure underlying tho liL_.ar sequeace of the expert's actions. Other systems

adopt the same bi_;; as RR: t:_ey prefer th( valid trace t'_at is ¢.lo.qe._t to _lmt a theory would have

predicted Such sy,;tezns can be classified according t,, tvhcre they fall in the space of _tr_.tegies
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described above for R[_.. For instance, the BUGGY student-modelling gystem [Brown and Burton,

1._78] u_s a minJmality-first strategy to infer a mod¢.l of how a student doe.'_ arithmetic

Example The toy in._uranc,: domain, as usual, will furnish art illustration of RR. A pure validlY, y-

first st.rategy will be used, with no pruning o_ ordering heuristics. Con,Oder the reeon._tructiort of

the operator sequence for client Johnson (see Figure ,l). The validity-first strategy first generates

all valid operator sequences that ae_,mt f_r th,. ;,_,_,_'_r of mediura risk:

(1) a_tentive, ,,endangered: mediura-risk

(2) art;entire, neutza:_: *medima-risk

(3) ,'inattentive: *endengered, *medium-risk

(4) *inattentive, neutral, meal:turn-risk.

The deviation of each sequence is then measured. Operators that are found to disagree with the

ones predicted by the rules have been marked above with an asterisk (,). If the default deviation

metric is used, then sequences (1), (2), and (4) tie for first place with a score of 1.0; the choice

among them can only be made arbitrarily. Itowever. the deviation metric that was actually used

for thi:_ toy domain treat._ violations of the 'st._dent' rule as les.,, serious thorn other violati,ms. Thus

operator sequesce (4) win.,., a:; reflected in the reconstruction inforn;atior, shown in Figure 4.

2.2.2 Theory extension

In the proce,_ of recor;struc_,ing how an observed answer wa.q derived, RR is bound to turn up

inadequacies of the weak theory. ]n such ca_e_, the Theory Ex_en:;ion module (TE) i_ invoked

to patch the weak _,tieory appropriately. The general problem of theory repair is quite difficult.

Wil.kins [1.088, ¢k.4] giv,_s a good ovel:view of various techniques that have been tried; there has been

subsequent work undc.r th," r,lbri,- ¢,f abd,,_ion [blorr]s and O'Rorke, 1990, for example] B,-cau_o

the general p_obtem is :_o hard. TE takes a res'_ricteq approach to theory repair. II is geared to the

two particular si_.uatiot_s i_l which TE is im'oked t,y RR.

The first situ,xtion is when RR, cannot find a valid opc'rator sequence h)r a given problem/answer

pair. Viewing r,:construetion as a search task, this means there t,,.a_; no complete path from the

start state (containin_ the problem) to the goal ._tat,, (containing the answer). TE trie.,: to complete

the path by proposin_ n_w operators to bridge gaps between previously-unconnected states, in

general, there will be multiple sets of operators thai will do tiff,:. TE _le,'ts the minimal set, where

min.imality is delined by a co._r, metric. The co';t metric typically u:_es dornain-specific knowledge to

evaluate the cost of inventing a new operator b_tweeh a gi_,:n pair of slates.

The second situation in which ']'E may be invoked is when RR cannot firld n valid operator

sequen.'e (hat has zero deviation fro:n the rules. 'this presents an opportunity to alter the rules to

bring their prediction into agreer_lent with on,. of th,' valid operator _eqqenc.es. ]{ow_ver, TE will

only attempt thi,, under very con',trained clr_umstan¢es, h_ particular if _t is kno_u that a certain

class of rules in the domain fits a particular template, then TE can try pr,3po._ing a new rule by
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instantiat.ing the tempiate for the current prol)lern. If this improves the deviation score of the best

valid operator sequ_.nce, then the new rule may be worth addil_'g to the theory.

In the existing implementation, TE requests user app_ova.] before actually making any of its

propo.,w.d ehange_. This plovides a sanity check on whether the extensions apve ar to be reasonable.

Ex:am.pl(_ RR we,_ able to reconstruct the 30 cases in the case library for the toy insurance domain

without recourse to TI:;. For illustrative purpose.,-, however, RR was run on a couple of additional

example._ and forced to call Tt:). in the first of these e×amples: client Davis (see Figure 4) was modified

to have an answer of neg|igible(Davis). RR could not find any operat, or sequenc(, to explain this

an.,;wer, and so J.t called TE. RR's search space is shown in Figure 7. State so is the start state,

containing the information initially known about the case: name(Davis) = Davis, addressl(Oavis)

-- ']'oyon Hall, and so on State ._! is the final state, containing the answer negligible(Davis). Arcs

represent operator applications; for instance: an arc leaving,tate so appli(_ the atten_:[ve operator,

resulting in a state s; containing the m:w _sertion attentive(Davis). In the figure, the at_;ent£v,

arc and resulting: state ,_1 have been collapsed witll the: arc and resulting state for its sibling operator,

inattentiw,. This collapsing was dew. _ throughout the diagram to hide distinctions irrelevant to

theory exten,;ion.

RR's inability to re('ons_ ruct Davis can be ,:con from the unre.,chabili¢,y of the firm] sta_e sl from

the initial state so. TE's job is to fix this bv adding one or more new op_rat,)rs. Four operators are

considered, G0OOl through GO0O_, sho_n by the gray arc_ in th,_ figure. 1o choose among the_, TE

applie,; a cost metric for the insut :ace domain. The metric is ba_ed on the r_nmber of i@'rencrs in

a state.', where an inference, is an assertion added by an operator. The initial state has 0 inferences.

State .s_ 1,as 2 inferences, because two _tssertions are needed to reach it; e.g.. attentive(Dart:;) and

ne_trM(Davi:0. State s! has 3 inferences., because other final states in this domain have 3 inferences:

and the number of inferences is taken to be a constant across final states.. The metric then defines

the cost (,f an operator to be the number of mfcren,:es it is inlplicitty making by going from one

state to another. For insra,nce, the cost of I;0002 i._ 2, because it goe__ from a state with 1 infereilce

to a state with 3 inferenceu. If an operator inlldieiqy makes zero or a negative number of inferences,

it is consider,rd non.sen:;ical, and is assigned an infinite cost. The (.fleet of this metric is to connect

the initial and final states using existing operators to accouuL for as many inferences as possible,

and new operators for as few _ possible. This is a rudil_entary example of how a cost metric can

guide 'rE toward minimal extensions: of the the,ry. By the metric, operator_ G000J through 60004

have o)stt. 3, 2, 1, aud infinity, respectively; hence TE p_efers (;0003. This enal,lc_ RR to infer ¢lw

operator sequence attentive, neutral, G0003 for Davi.¢

As an example of _fE for _ules, consider the rational reconstruction of chent Johnson. As men-

tioned above, Johnson has four valid operator ._eqnenrea

(I) art.entire, *endangered, _dium-rlsk

(¢2) art.entire, neut.ra.]., *_ditlm-r:isk

(3) *inatten_lw, -_n¢langered. *m_d_um-risk

(4) *trtatl;#ntlv_, l_eutral, medJ,um-risk.
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high--risk

att ent ire endange:_ed 0f medium- _isk

@or inattentiv_ or n_utl-&] @ or lo_-_'i_¢_

x %

.....,..GOC01 _.. GO002 -.G0003 6;0004

............................... ;"7::::.:_-;..v..::::..:.....[.'-2;;;;_..............._ (S_'_

MD/

Figure 7: RR's search space for client, Davis. whose answer has been modified to be negligible(Davis).

Black arcs indicate ,_pplications of e×igting operators. Gray arcs are. for new oper_,t, ors being con-

sidered by TE.

Asterisks (,) in _;he ]is',. mark rule violations The scqu,.,.no: with the smallest deviatior, from the

rules was sequence (4) (as ,;hewn in Section 2.2.1), but it still has ,_ positive deviation. This signal._

an opportunity for extending the rules. Now suppose that the following rule template is known:

If addre_2(c) = _.... then en,tangored.

TE ma3' (hen insl, antiat¢ the template for aolmson, yielding:

If addres.s2(c) =: Stanf0rd. CA then _nelang_red.

When this rule is ins_trted into the weak theory, it brings g,_.quence (1) above int_ eomplel e agreement

with the rules -- i.e., it gives it a deviati.on of zero. This is an improvement from the pzevious best

deviation, which wa.,; for sequence (4), a_qd was nor,-zero. -rE therefore propo_e._ this new rub: &,; a

pos_:ible extension to the theory. _

2,.2.3 Threshold setting

The Threshold Setting module (T.,;et) provides a principled way of thee.tins va.lues for the thre._holds

of the core method. The thre._d,olds are used in determilaing when an ana]ogy i.s compelling. The

dcfinition of o)mpcllingnes.,, is repea_cd here for convenience:

Compelling-p(,A) ,'-___

similarity-scote(.4) >__SSo

and accuracy(A) > .,1_

and (sig.nificance(al) > ,:;a or similarl_.y-scor_.(A) > SS'+)

Th- po:nt of compellingness is to ,_nab]e the ard_:tecture to decide wh_-n il should li:_ten to an anal-

ogy -- i,e., when the analogy i_ right and the rules are wrong. The goal of "I.,;et, consequently, zs to

s/although t]v: ltew rtd¢ bnproves the t¥_tem'i a_coun/of tl6s l,a.rticular client, it Ill.xy VealS,n%its _t.C¢,t',lX_.atOf other
c'lJents, "[he sy,ttem depends, on th,_ lager to vcrlf;,' that the tadcs propc,sed by "l'_ are ht fact r,:aaonabl¢ atldJt;on_ to
the theory.
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pick values for the thresholds that will result in analogies being classified as corrJpelling whenever

the)" would correct wrong answers of the rules. Tset takes a machine-learning approach: it generat_

_raining analogies: and tries to pick the thteshold.,_ so as to do the right _hing for these training analo-

gie_s -- that is, it -:hould accept analogies that correct wrong answers of the rules, and, conversely,

it should reject, analogies that spoil right answers of the rules, The approach is semi-automatic iu

that I;he user has the final sa.y of what values to pick, based on Tset,'s re.commendations.

T._et. generates it_ training a.nalogies from the case library. It pretend.,; that each exemplar in

the case library in tufa is a t.a_get problem, and it finds all analogies to it from or.her exemplart;. A

training analogy is classified as helpful if {t, suggests the right operator for a target problem where

the rules would ha_e suggested the wrong operator. An analogy is harmful if it suggests the wrong

operator for a problem where the.. rules would have suggested the right operator. 7set,'s task may now

be framed a_s one of select.ins thre.¢held value_ that _.ninimize t,he number of miscl;msified analogies,

,a,herr: miselassified analogiet, are the helpful ones that are judged unc¢,rnl,elling plus the harmful

ones l:hat, are judged compelling.

While T.,)et could, in principle, :;earth the 4-dimensienal spar,, of threshold settings for the one

that minimizes _he number of)mscl_ssified analogies: t,his turns out to be quit, e costly in practice.

Instead of txyirtg to se(, all 4 thresholds .*imultaneously, ther,:fore. "lset sets them one at a time.

This gives up (,he guarantee of findi_,g l_he global minimum in exchange for tractable run time. The

thrcshold-._etting procedure has three steps. On the first ._tep, Ts,:t, temporttrily adopl.s a simplified

definition of cornpellingn¢-._s:

Conlpe!ling-p'l'.A) <:_-

_imilarity-vcore(¢4) > SSo

This definition requires setting onl.v one threshold, SS0. to minimi_.e the nun_ber of miselassified

analol_e._. Figure $ shouts what prototypical distribution_ of helpful, harmful, and misclassified

analogies would look like at th_._ stzg,: of the processing. The value of 5',5'_ that rninimize._ the

number of miscl_,_ified atxalogi,_ is also shown. Tset does not choose thi_ value automatically,

however, but, rather displuys the distribution_ to th_ u_er a_d le_,s him make the final decision, q'he

SS÷ threshold is also set ut this point, tl)e hal ur,_.l c.hoiee being a value just high enough to exclude

all harmful analogies.

Once a vil.hl¢: of SS0 is selected: MI t|:ai|fing analogies whose similarity scores fall below this vtduc

can be discarded; t,hey huve already been cl_.silCied _.s une0mpelling, aud so offer no information

about how to set, the _e-st of th_ thresholds. Each subsequent step of the lhreshold-s, etting proce-

dure therefore has _'ew,._r training analogies to prc_ce._s -- only the one_ that ar_: left unclassified by

t,he previous steps. This makes th,- ._|,b_equent steps fast_.r to rm:, all,hough it also make._ their

conclusions le_s reliable due to the smaller nur_tber of e:_.r'nple:; on wh_-h they _re b_,_ed.

The second and third s:,eps of the threshold-.selting procedure set the A_, _nd ,.¢,'_threaholds

respecti_'ei:r. These steps are simila_ to the first (except that there is no aa_log to SS_.). Each s_ep

adopts a temporary defimtiut_ of eor|,pelli_gr|ess, adding c,ne more ronjm_c_, of the true defimtio_.

At the end of the third s_,p. all four :hrcsholds --- ,5"Sc, ,_',5_+, A0, and So _ _,i)l have been se, t

O



18

t;,O

<
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" Help-....

SS. Similarity score

Figure 8: Distribu_.ions of helpful, harmful, and misclassified analogies, as a function of similarit 5
score. SSo and ,_'b+ ma.rk the theoretically optimal so.ttings for the similarity thresholds.

Example Tset _as used to set the thresholds for the insu_a,ce problem. The results appear m

Figure 9. The distributions of analogies _.re ,bown for each of the three steps of the procedure.

"Ihese curves do nor quite ha_'e the idea.] s}lape depicted in Figure 8, being based on only 30 eases,

the number available for the in._urance pr,:,hlem. The thres;hold value__ that were sel_'cted for this

task were SSo = 4.0, .5".5'+= 6.0, A0 = 0.66. and ,% := 0.50. The values for S,g0. SS+, and A0 were

seteete,:l at or near the optimum values. "The¢hoi,:e of .fro was less clear-cut, as the error ¢ur'ge was

largely flat between 0.0 and 0.6,5 (this was beca;ls.e it was ba._ed on a lopsided 34 helpful analogies

and 1 harmful analogy). I|s value of" 0.50 was ,:hosen somewhat arbitrarily within this range.

2._ Discussion

A number of "frt:quently-o.5ked questiovs" about the design of the architecture are discussed below.

'Ihey are grouped by whetker they concern the combination of RFIR and CBR. just RBR, or just
CBR.

2.3.1 Combin.ation issues

Why i.s tLBR applied before CBR? Rule-based and case-based r.easomug can be combm0d m

t.hrt,e main order's: RBR first. CBR first, or some inter lea_ ing of t,he 1,_o. "l'he art hitecture presented

here adopts the [tBR-first strategy, using (-'t:IR merely to patch err,._rs left I.,_ RBtU 'l'hit_ strategy

is appropriate when tit," rule_ are rea._onablv efficient and accurate to begin with. If the rules are

deficient m some _-ay, t,he CBlbfirst .,;trategy may make moro sense If _he rules and c02es offer more

btdan¢,._d contribution, to t,he prc, blem sol_mg, then an interleaving _trategy msly be best
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Figaro 9: Results of applying the threshold-,_tt, ing procedure to ti e lo_ in:.urance problem. For each

of the three step,, of the procedure, the dislribution_ of helpful, h _rmful, and misclassified training
analogies are shown. Th," miscla_;sifled .analogies are the hdpfi_l on_ below a thre:,hold value and
the harmful ones at or above l,he value. D_hcd lines indicale the values cho.,;en for t,he thr_.-sholds.
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Can analegies be drawn _-ona pr_sitivc ex_ml)lars? While the architecture currently draws all

of it_ analogie_ from negative exemplars, analogies from positive exemplars could also be uc-cfu) in

certaiJa sil, uations. One way to use them would be to decide between R.BR, and CBR by weighing

the evidence from Fositive analogies against that from negative analogies. The drawback of this

approach, however, is that it. relies on the case library to illustrate not only the places where the

rules are wrong: but also ali situations where they apply correctly. Given that the rules are _sumed

to be fairly accurate to begila with, thi._ could require a huge numl_er of positive exemplars.

Art alterraaLive that relies less oil having total analogical coverage of the domain is to use positive

analogies to resolve nondeterminism in the rules -- places where the roles suggest multiple opera_ors.

The operator with the greatest support from po._itive analogies is then se}ected. This approach is

less sensitive to gaps in posit, ire coverage because it: compare._ positive analogies to other posit;ve

analogies, not to negati.ve analogies. Gaps in positive coverage therefore tend to affect all operators in

the comparison equally (e,.;pecially if the evidence for each operator is averaged over a set of positive

analogi_). _quch a scheme w_ implemented in Anapron. and is described below (see $ecl, ion 3.3)-

This u_e of positive analogies may be regarded a.s a metho,] for combining rules and cases to make

uoadeterminisLic answers r_nique. By contrast, the architecture presented here is a method for

combining rules and cases to, make de'_erministic answers more accurate, q'he. two method.¢ provide

orthogon:d functionaliry, and may be used sermra,tely or in cornbi_ation. Anapron is an example of

using them in comhina.tion.

Could rules and ca.c;es be converted into a uniform representatiorl? An alternative Io a.

truly hybrid system -- one that wc, ri:_ from muhiple repre':entations -- is to convert all knowledge

sources into a uniform xepresentat_on, at_d work from that. Convert, ing between rules and c_es tends

to be hazardous, however; the conversion tends to)i[:ld inct_cien t or unreliable represent,_.tioas. See

also Golding and Roseabloorn [1991].

O

O
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2.'L2 Fi'_BI_ it;._ue,¢

What. if the rule_ are not. of an _f-then-clsc form? The architecture a_;sumes that exactly one

rule will fire in any s_,ate to recommend the next operator to apply. This affords an etL_y way of

_ssigning credit to the rule-,: a rule i.¢ held responsible f(_r the operators it recommends. Thi:_ cr,_dit

a_ignment enal'Aes the architecture to _rnprove the petforrna_ce of the rules -- it lel._ it a¢*oeiate past

mistakes (negative exemplatsj, _ith particular ruh's and lat,:.r override sin_dar incorrect behavior:; by

analogy to the p_,st mistakes In a more distributed, evidence-t;athering model of problem solving

such a.s that of MYC'IN [13uc_aanan and Shortliffe, 1!.)_4], rrml|iplr, rule._ can fir_, and all contribute

to each deci:_ion that is raade. To accommodat,*, such a rule formalism i_,to the architecture, an

analogou.'_ credit-assignment procedure would he t_e¢:,J_'d -- one. that _'ould ascribe some proportion

of the credit for each deci:_ion to each of the rules, that tm_lributed to it

O

O

O
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2.3.3 CBR i.,;sues

What is the appropriate level of generality for arules? Each time the architecture draws

an analogy, it extracts th,_ generalization behind the analogy, and repre_,.ent.¢_ it _._ an explicit rule,

the atule. It then uses the. arule to do an empirical verifica_.ion of the analogy. This involves trying

out the arulc on other ca,;c._ in the case library. 7he purpose is to s_:e how well the generalization

holds up for o_her examples.

An. arule is not unique,ly cletermined: the only constraint i.'; that it must bca generalization of

the source and tar_,et problems. Currently: the arcl_.itccturc makes the atulc maximally specific --

it includes it, the arute all conditions shared by the sourc,_ and target (according to the similarity

metric). ]'he iclea is to minimize ,+.he inductive leap; this reduces the risk ol overgeneralixation.

ttowever, there is a.n argument for generalizing more liberally: the more general the arul¢ is, the

easier it will be to find cases in the case library to which the arul¢ al_plies, and thus the more

informed the empirical, vcrifi,:ation will be. Striking an appropriate balance between this greater

ease of empir:,cal verification and the ri:;k of overgeneralization is alti area for fut, ure w<_rk.

Could the architc:eturc save its a.rules? Given that the architecture already goes to the trouble

cf extract.ing the generalizer.ion:, behind its ;_nalogie__ (_¢ arules), it certainly could store tht.m.

Incorporating the arule into the exist ing rule set is straightforward: the atule _eprese nt.s an exception

cia.*._+,;of the rule from which it origiL, ated. Thus the arule wotAd be stored so a._ to always override

the original rule If the rules arc of an (f-_hcu-d._ form, t,bi.,_ mean:_ ordering the aru!e.}ust ahead of

++he original rule.

Saving arul¢.'._ in thi_ way would gradu,_lly "compile" the++ca_e;_ into rule.-, {.hereb? shifting the

burden of problem solving from CBR to B+BF_ \Vh,rthcr this shoulcl be done is basically a +_tore-

versus-compute tradeoff. The architec,'.urc can st.ore its arules, itr which case it save:: the time of

redcriving the analogi_: 6r it c;,n compute the arnle._, in which c_e it saves the storage cost of

keeping around all past arnica. One cot_ld irrJagb_e rest>lying this tradeoff i_ eisher direction. The

deci.¢ion in the architecture to (re-)compute, rather than store, we+ ba._cd on the reasor,ing that,

because the arules a_e con:strocted to be m_×irnaiIy specific (as discussed above), a policy of storing

wotJld end up keeping a ]arg_: mtmber of rule_; that hardly ew, r fired; moreover, thes-" rules could

easily be _edcrived if need__'d.

How does the architecture do case adaptation? C_e ad;xptation i:; the proces_ of trans-

forming a s*zurce ea.se to make i'_ apl;licable to, a (di._parate) target ca._e. Traditional techniques for

ca._e adapta:icm inwAv,, retrieving the er:tire source solution, and de, lug localized problem *;ol_,ing to

patch tt,e parts that are it_compatibIe v:itl_ the target ca._,. Tl,e. architecture pre_ented here take,,

a diffe_:en! tat|;: using FLR, it f'actor:_ the ._c_rce case i_,to iitdividual operator application.,;. 1_ _.ben

draws analogies frown thes,, individual operate.- applications to the target prohi,:m. Th," individual

operat,3r applications are s_lfficiently finc-gr.'.dn,.d tl,at th%_ can get,orally be tram'_ferred to t.he target

proble+_ verbatim. "Fhu._ the architectt, r_: employs _ strategy of "cr_,._ adaptation I,y fact.ori_tg". This
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_tratcgy is related to the _dea of decomposing a source case into smaller parts, or sn2ppef_, each of

which addre.c,_es one sttbgo_] of the ea._e [Kolodner. 198g].

Q

Can the architecture |earn new cases? Cl_sical CBR [Riesbeck and Schank. 1989! involve_

a learning step: after a $,arget case is solved: it is stored back into the. c_..,:.e hbrar} to enrich tile

sy._tem's batik of experience. Such a learning step could be incorporated intc the architecture

presented here by having the architecture ask, after each problem it solves, whether its solution is

correct. ](.f the answer is affirm_.tive, the ca_e may be added to the ca._e library directly, if not.

fnrther dialogue would be. needed to debug the answer before it is stored away. Tiffs procedure

is not currently ilnplernented becau:;e it would create a need f¢,r run-time feedback from tile use_

However, additional cases can always be added to the e;,-<e library off-line if desired

®

Q

tIow is noi._e ila the cage libr_try handled? Tho ardmecture protects it_df against ran<curate

cases through empirical verificativn. A bad cat,e may lead to a bad analogy being pmpc_ed: but th_

analogy will be r_ected unles=- there is a signiticara nqmbcr of supporting c_aes The _me exception

is if the bad analogy h_l.s a high enc,ugh similarily score to exceed the SS÷ tbrehold: in thai event

it w'ill be -'accepted even without other supporting ca.c_s. "[hi_ i._highly ur_ik_'lv, however. _s tits" SS+

thresho]d shouM |lave been set high enough to avcid such spurtou,; analogies.

O

O

3 Anapron

The architecture presented here wa._ applied to ham, _ pronunciation _esulting in the Anapron sys

tern. Names, becauae of their va_:ied et:,'molog_, are a notorious sl.umbling block for pror.un,-iation

systems; this ha_;, _de name pronunciatior, an ir_portal;t prohlela in tex_-t_-gpeech sy,tbest._ "! he

domain is well-suited to appl,.cation of the arcl,itecture, _ rea_onal',ly ace;irate and efficient rule._

of prommcial.'_on ace known, ye-t the donmin is sufficiently c_mplex that perfect rules have never

been devi,_ed -- rules inevitably hav_. e×ceptions. This suggests application of the architecture pre-

sented here. The architecture can take advantage of the existi_g rult._, i:np_rfe,:t th,augl, they ma_

be, while also tapping into an alternative knowledge" source, namel._ example._ of name._ and Ibeir

pronunciatio_ts. By assimilations knowledge from both sourcos tho architecture ha._ the' W,t,nt_al t-

outperform existing; systems, which are either rule-based or ca_e-based, but not true hybrids

The sections below start by introducing lhe domain of r, ame prtmuncitttit'm TL," a[.pliealt-n

of the archito.cture to tl_is domain is then described: and an _d,liti,_na: annie, Deal med,au_sn, ts

pre:_en_.ed that wa._ incorporate:t to deal with nonde'-rmini._m mth, _ r'al,'s The de._tr,l,ti.,ns art

at a high level, to giv,- the ba._ic idea of Ahal,ro_:_, operation and a sense of ti_e task of name

pronunciation. _ithout ge_.ting deep int_; tt_e intricacies of the d_rr, ein For full delail,:, see. G¢,ldir.g

[|s._l.

o
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3.1 Name pronunciation

Name pronunciation is a problem of practical intercom. It. come:_ u I) in almo.q_ any te_:t-to-speech

application, but especially namc_]ntcnsive applications, such as telephone-ba_ed credit validation,

voice mail, and generic reverse directory assistance (i.e., number to hattie) iV,tale, 1989]. The

most important property that make_ nameu unique, a_: compared to regular words: is their varied

etymology. Ne: only musf. a. pronunciation system infer the language of origin of a name, it must

then decide _ow to treat foreign names. Strict adherence to the native pronunciations can come

out sounding stilted at best, and |.minteIhgible at wor,_t. What is needed, as._urrdng an A_nerican

u,;et populal,ion, i._ some appropriately anglicized interpretation of the foreign langq_ages. These

etym,vlogy-related difficultic:; make narne_ problematic for pronunciation systems The brute-force

soluti.on would be to co_struct a giant pron,zuneing dictionary of a.l] nam_¢ the: sy.,:tem is apt to

encounter. "i'he problem xs that the set of names is in gcncxal open-ended. A system reading, stories

off the AP newswire, for im_tance, ha_ to, contend wit}, a. constantly changing set of newsworthy

individuals. Ia the en¢l, one can only expend a finite amount of resources building a name dictionary:

pronunciation _ystem:. wi]l always have to deal with the problem of unfamiliar names.

Until fairly recently, t he *olution was simply to pronounce names badly: prommdation of proper

names was a.ck_.owledged to be an open problem [Klatt, 1957]. In receipt years, however, a :;ubstantial

effort ha_ been de-oted to ,,he l:_rob]em, resulting in several high. quality commercial systems. The

pt-edominant approach has been to develop rulc_ _ailored t;pecifically to name.,;, a.s in, for example,

the Orator T'_ .,Tstem [Spieg,:i and Match,, 1990] and DECvoice iv,tale, 1991]. While these systen_;

have achieved among the b¢_t performance ye_ demonstrated, they have also shown the e×tremt_

difficulty of writing rul_s to coy,:-, every contingency. No matter how many rules are written, there

always seem to be exceptions. This observation i:; the ba._i_ for an alternative approach to the

problem: which views name pronunciation more as a huge bag of idiosyncratic behavior:, than as a

rule-$overned process. The approach: cmbodi,:.d in the TTS sy_,;tem [Coker el al., 1990], is ess,:'_tially

case-based, starting from a large dictionary of names and their pronunciations, and pronouncing a

new name by retrieving a reh:vant source nam_ from the dictiolmry, and perforlmng one of a number

of pre_peeified I.ransfo.rmatioas_ such a_: _uf[ix exchange (e.g., AGNANO =: AGNELLI -- ELI,I 4" At_O).

TTS performs well --- comparably to the. rule-ba._cd systems, rnentioned above --- but like those

other _ysterns, :;till leave.s room f¢Jr improvement. The good. but imperfect performance of both the

rule-l',ascd and case-b_ed approaches 1.o na_ne pro,mnctation _;ug.gestg coraL,ironS the two; however.

no previous, practical system h:_¢ taken a true hybrid ttpptoach. Sullivan and Damper [1990: ],ave

combined rnlos and ca:,es in a model of human pronu:wi,,ti,..,, but lheit model generates either a pure

rule-based or a pure case-based ,;olution --- it dots not intermi× RBR an,.] CBR within a *olutio_ a.,,

Anapron does.

Name pron||nciation i_. d_fined },ere _-s ihe task of <onvetting aI_ input spelling, e.g., K [;IDI;L, into

an output p_onunciation, e.g. k'ayd ehl Ohynws with MY B_:LLr). Thc pronunciation isawrilteu

¢'f}rator i_ ._ tl':,d_:_iark of )_¢l.l,:ole.

t T]6+ i+; an example of a+_ .spp+ ul, r_,,t,:b ttt,_lirizcd p, omtJ_d,tt _¢)ll, The nat ivc German pr,munt'inl ion mar e n,'mrly

rhymc:_ with lnLE [3tefanle Briini.gnaa_ pt'rt61'_ cntnm!_nicati._. 199.', I.

Q
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Module Fun etion Application t o E E;_a_;b

Language

Morphology

Transcription

Syllable structure

Stress assis_rnen+

Selection

Determine language

Identify prefix, root,

0.nd suffix morphemes

Map letters to phone_

Break into syllables

Assign level of stress

to each sg,'llable

Pick best language/

morphology analysis

Generic or German

KEIP.EL = a single root morpheme

kiyd ehl if Generic: kayciehl if German

kiy-dehl if Generic; kay-d_hl if German

k" iydehl if Generic; k" ayd "ehl if German

k" ayd "ehl /German)

Table 1: Illustration of Anapron's pronunciation rnodules for KEIDEL. The output of the module.,:

has been abridged for clarity.

specification of how to prono|mo., the name; it could be fed through a speech synthesizer to produce

an a.etua] ._poken rendition. A pronur, ciation inc.lude.'; the scqu,_nce of phone:, or sound:; in the. name.

as well a_ the level of,;tre:s.s to placer on each syll;xble, ttere, the phones are kaydehl, while " and "

are: stress marks;. The " says to pul secondary stress on kay. ":['he " means prirnar_ stress on deh'l

The flotation is taken from DECtalk r''_, but is unimportant for pnrpr_._es of this paper.

In Anapron, the t_k of narnc prormneiarion is divided among six f_rinciple module.';. Table 1

gives n brief account of what each module does. by way of illus_Jation for .KE;al¢:_. TrmJscription and

stress aaqignmeJ_t are the top-level modules: _hey contribute to the output pronunc.iation directly.

The o'ther modules are in :_ervice of transcription and stress. The language and morphology modules

produte _ondeterministic answers. Here, the language module generates two possible, language

classifications of the name .... Generic" or German, ]'his nondeterminism is carried th.rough the

or,her modules until the select.ion module resolves it b v choosing the German avalysis. The way the

selection module makes its choice is discussed below (see Section 3.3}.

3.2 Application o1" the architecture

The ard_itectnre _a.s applied not to the tz._l_ of name pronunciation _L¢ a whole, but to its two

top-level subtasks: transcription and stress assignment. "Ibis section _kel, ehe._ the _ppliration of the

architecture to _:aeh of ttu_e subtasks "flJe k_,owlcdg¢ sources art' briefly d,:scrihed, followed by an

illustration of the archit, ecture's operation using then,

Tbe architecture works frorn, three khowledge gollrct,s for each la.<,k: _t weak theory, a set of

problem/answer pairs, and a _imilarity metric. The weak theory for transctkptiolJ was b_sed on the

rules of the Ml'lalk text-to-speech system [Allen +:/at.. 198";], ,-_ w_ll as introd,u:lory grammar t,exts

IDE.CIMk i+ a t rad+.ma,¢kof Digital Equlrmtem Corpoluhc, u,
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for French, German, Italian_ and Spanish. Each operator in the weak theory sav_ how to map a

letter or letter cluster into a string of phoJ_es. For instance, the operator _:$ .says to ma.p the letter c

to the sound _: i.e., a ,_oft C, as in _CErJT. The basic operation (ff the theory is then to work through

the name: applying operators to transcribe each let ter or letter cluster. The rules for choosing which

operator to apply can to.st the letters on either side of the cluster being tran,;cribed, the language of

the name, and its morl:,hological ';tructnre. I:o_ example, one rule reco_nmends the ¢:s (_perator if the

following letter, is I, v., or v, ,and the name ks of Latinate origin -- this is the familiar 'c softening'

rule. A rule can also test how surrounding letters were transcribed; this impos_s the constraint

that the surroundilag letters, be transcribed before the rule at issue is rnatehed. Such eonstraint_

restrict the possible order:; in which the letter._; of a name may be processed. Occasi.onal]y a circular

dependency may arise, in which case a deadlock-resoh,tion .,_trategy is invoked. The weak theory for

tra_nseription has a total of 295 operators and 61!} rules.

"the weak: theory for stress, a.ssig_iment is b.._c_ed oa MI[alk. the grammar texts mentioned abe,re,

and the stre,3s theory of [,iberman and Prince [1977]. The goal of stress, assignment is t,:, a,'_sign a

level of stress -- primary, secondary, or zero (i.e.. no stress) -- to each syllable in the name. The

weak theory sta.rts by a_o,',igning stress to each morpheme in the name individually. This is done

in two backwar.d passes of the morpheme: the first pa._._ make_ a binary decision as to whether

each s;yllabl¢ h_ 2ero or non-z_,ro stro^_s; the second pas,_ refines these binary s_rezs levels into

a proper three-valued stress pattern. 'l'he stress patterns for th*" inrlividu,ll morphemes are then

combined ivto a stress pattern for the whole name based on imposing :_ hierarchical structure on

tb,, morl;hemes. ]'he operators of the weak theory provide primitive,_ for implementing the above

procedure. I-br instance, two operators implement the first backward pass of as.sigtfing zero or non-

zero stress to each syllable crf a morpheme: MSR, which talent.tiles the last syllabic: _'.'ith non-zero

stress: and p:ropagate, which repeat.edly jumps backward to the next syllabi<, with non-zero str_:ss.

The rides of the weak theory confrol t_hich operator i_ applied and ho_' it is itlstan_,iated --. e.g., how

many syllables the propagato operator should jump back each _ime. The rules ,:an test the spelling

of the name, i_s language, morphological st ructure, transcription, and syllable structure. The'- weak

th_x_ry for stress has 7 operators (not irtcludiltg iastantiations thereof) and 29 rules.

The second knowledge sottrc_, of the architecture, the set of probl¢'m/answer pairs, was derived,

in the c_se of both transcrip_iott and str_,ss asstgntnent, from a pronouncing dictionary of 5(]00

surnarnes? The dictionary include.s the 2500 mo_ frequent nant_ in the US, 1250sampled randomly

from ran],.s 2.500 through 10,(J09. and 1"250 from rank.,; 10,000 _o _J0.000. The utility of _hese last two

group,; is to illustrate pattern_ that are in',Fortm_t t,ut _hat may no_ appear itt the very comtrton

nalrles.

The ._irrfilarity metrics uso] in Anaprot_ are bm;ed or, bro:id, apl.,roxintate _not_ledge about which

f,2,¢tor:; determi0c a given aspect of a name's promtnciatior). For tran_criptiot_, there ar_. two fac-

tors. Fir_qt, the letters in the imrnecliat_, vicinity of _lte cluster-to-be-transcribed affect the eluster's

pronuncia.tioa. This is due to a.,:similation effect,;: while the mouth is f, ronom_cing the ¢htst_r it

is anticipating the" next sc,ua,t_, _, _r¢ll e_ r(.taiaing a_pecl:; of th," previ.3u., ortes. The second fac-

'qTh_s dictionary" was kJ)_dJy pr-vid_,,:l by B_llc,:.re f_.r p_u po_c$ ,_t tiffs re,caret,.
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RBR CBR Combilmtion

K N:k _ K:k

E
El :ay -- gz :ayI

D D:d -- D:d

E E:ey E:eh g:eh

b L:l -- L:2

Q

®

Table 2: Transcription of KEIOEt, under the German al_alysis. The table shows the tra_ascription

operators recommended for ea.ch letter of the flame by RBR, CBR, and Combirlation.

Q

tot affecting the transcription of the cluster i_ the overall "shape" of the name -- _5serttially, its

pattern of (orthographic) consonants and vowels The shape affects the pronunciation in that it

reflects global influence_ such _ language and morphology. The transcription metric take._ the two

precedi.ng factor.,; into account by cornl.,ining a d,'tailed comparison of the t,,vo names immediately

around the lette_ cluster being tran._cribed with a rough global comparison of the names.

The stzess metric is analogous r,o the trar_scription metric: it does a careful comparison of the two

names in the region that is most critical for the particular stre._s operafor at i_ue, _._ well as a rough

global comparison, _;o pick up on effects of language and morphology More detailed ,;pecifiealkms

of the me_ric_; can be found in Gelding [1991!.

The remainder of this section illu._trates how Ar.mpron, given the abovementioned knowledge

sources, pronounces names. The ilhistration will [,e fi_r t,he transcription of the KEIDEL example of

Table l. Transcription of I<_:lOgt. is actually performed twice, once a--,suming the name i,; Generic,

and once assuming it .is German. This example is for the German case. As mentioned above,

transcription involves applying operators _o |.he name: in some order, to map letter clusters to

strings of phones. Anapron selects the operators via the RC-.Hybrid procedure, Table 2 summari_,s

the result:;, disregarding the order in whid_ the 1,.'.tt,'rs are actually processed. For the tirst, letter

of the name, K, R.BR is invoked first, and sugge,..ts the K:k operator, which maps, the h,tter K to

the phone k (as in KITE). CBR is then invoked to propose analogio_ contradicting this choice of

operator, but no such analog:,' is found. "I he Combination module therefore applies the operator

suggested by the rules, K:k. Application of the next two operatc, rs in the table. _:l:ay and D:d, Is

similarly urtevenl ful.

For the E. thing_ get more. interesting. "Ihe rule_ suggest t::ey, the defauh pzonunciation of E

in German (as in FR]_(;£). However, CBR finds an analogy from VOGEL which suggests the g:eh

operator inst.cad. This analogy h,x_ a similarity ,_core of 0.73. Empirical verification reveals that

the generalization behind the analogy ---which says to apply E.eh ill German mtmes in a particular

context -- appli,.a to 7 e.-_o.._ ill th_ e,-t._e library: E,DF:.I.!qROCI<, i;'OGF_,L, Gr:IBE, b, .LOC_iL. $C}t_^B.__L,

SPI_;ID_L. and of course VOG--d.L All 7 have E:eh apphed Thtls tit, necuracy o1' the _nalogy is

7/7 = 1,0U The significance wori;s out to I,e 0.71. The _ay the thre_hold_ were set, the analogy is
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deemed compelling. Thus thr_ Combination module selects E:eh, overriding the rules by the analog3'
with VOGEL.

For the final L of the name, the relies sugge._,t L:I, which again goes unchallenged. Thus the

output of th,- transcription module for the German analysis of K'2[DEL is kaydehl w a._opposed to
kaydeyl, which is what the ru!e_, alone would have said.

3.3 Positive analogies

As mentioned above, the language and morpl',ology rukz in Aaapron tel.urn multiple an,;wers, due

to the difficult3' of uniquely analyzing these aspects of a name. This rule nondetermini_,:m i_ resolved

by the selection module, through the method of po.qit_ze analogz,'s. The idea of the method is to

use the po._itive exemplars in the ease ba._ to reinforce correct rule applications, just a._ negative

exemplars were used to detect incorrect rule applications. The.. method starts with multiple ca_ldi-

date pronunciations of a name. ¢orrespondil_g to the diffelent ways of applying the language and

morphology rul_. It evaluate_ each candidate pronunciation by seeing if the operat_rs that were

applied in deriving that pronunctation :;ecru to have been applied correctly. It does thi.s by drawing

an.ninnies between each operator application in the pronunciation and the positive exemplars of the

rule that recommended that operator. The closer tbc operator application ]s to a previously-seen.

correct application, ¢he more favorable _h_' systom's evaluati-n of that operator will be. Specifically,

the score for an cpera¢:or is the :;imilarity score of the best aaalc_D" found. The overall scot,: for a

pronunciation is t.le average of the .,:coreg of its tran.,.eril',tion and stress opera.tots _0

Table 3 show._ how po:;itive analogies were used in t,be !'(Eli)EL example. OIAy the annlog.ies for

transcriplior_ or.erators; are show_. On these, the German analysis outscored the Generic analysis;

the same turn,, out to be true of the ore'rail scores, wbich is why the German analysis was ultimately

selected. The main reason th_ (.;errna_j anal veals did better ori transcription operators i.,; that the

Generic analys_ had little support for its El:iy operator; R _ID wtL_used; but scored poorly due to

its global di_imilarity from KF.IDEI,. _fhe name KIEDEL. while _aluabl,, elsewhere in the Generic

analysis, could not help with EI:iy, because its I and E are in the wrong order. One other point

concerns the E:t_h operator ire the German analy_i_ thi._ operator wm applied by analogy, not by

a rule, thus there are l'¢._positive exemplars on which to b;_e its score. Instead. t,he score of such

an operator is taken _¢,be the similarity score of the analogy that _nggt...;ted it _ in tiff, ¢_;(. _.he

Voofit./F: _;t:)l_L an alo,;y.

l°In addhlon, a pr_*mnciallan m_y rec,.tw, bt,mtt_,_. ,_r pa,_,',lti,'_ a*ti_ed by tl,¢ rules. "l'h¢ mote cormn, m type

_t t be, mete it wh*n a ntmt e'ontaiat a prefix" ¢,r ._ufft× chata,:t¢rltti_, of .x pos secular l_.hgua)_c For ilt_tanct,, the nt_rnc

.'_G_BAI.dB£3.tl ]'_tta the ¢ht_r act,erJstlc F*_etsclt ¢ll,_||g -g _.11, the k_t:_|(:]| edlaJyb]_, of thi_ nt_./tle therefore receives a be.t)tl.t.

Th,.** v, dt-b_,sd s,:.ore, complcmet',t the _u.t,fl,,g._-b_cd :_,:oret, altd enable the sy_tc_ to dacide /tmong co,paling

pronuntAatlova of o natrte _aven in the oh/enos of a cast hbrary, albeit ,n a h'a_ inf¢,rm_d way.
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Op Analogy Score Op Analogy Score

K:k _¢SLCR --,KmDZL 0.67 K:k __KEEL_m.--, _EID_t. 0.88
El:ay SP,E_D_L--, KE_.[DEb 0.67 EI:iy R_D---, ]<v_[t)F_i. 0.00

D:d SPEIDEL --, K_[DgL 0.9] D:d RUg_DEL--* I<EI_DEL 0.71

g:eh VO(2_EL --, KE[DEL 0.73 g:e R.IED_L --- ]<EID_EL 0.86

L:I GEIBE_ --, KgIon; a 0.91 L:I R_EDE£_ .--_ ]<EIDEI: 0-88

Transcription score: 0.76 Transcription score: 0.56

(a) German analysis (b) Getieric anal.vsi._

Table 3: Positive .analogies for transcription operator.,: of the (;er[nan and Generic analyses of

KEIDEL.

4 Evaluation

Anapron', performance _x._._ evaluated in three phases. The goal of the first [,ha£.e was to gain a

quantitative understanding o.t" system performanre: a profile was taken of how active each part of

the- sy:_tern was in practice., and any de_;iation:s from the exl:,ec_ed performanc,_ were analyzed. The

second, pljaze stepped back flora this int,crnal analysis of Lhe syst, em and looked at the "bottom line":

how doe._ the performance, of the rule/case hybrid approach, as embodied in hnapron: compare: to

that of other approaches? Commercial systems, other re._earch systems, and humans _ere. included

in the comparison. Once the overall performance of An,.pron _,a.* a.<_'ertain,:d, the third phase

wa.s to, undeEstand how it achieved this. performance, by evaluating _.he contribution of each of its

c.ornponents. 'This involved sysLematically modib'[Itg each compom'nt, and me,'t_uring the impact on

system performance. The sec_,ion,_ below d_scn_.¢ the three pha_,es.

4.1 Expl.oratory nmnsurement_q

Exploratory me._urements of A napron were taken f:o get a quantitative picture of its operation.

and re, dr,teeS any deviations frc,m the expecled behavior Two main finding.q emerged (1) The

system found fewer st:_onq analogies for rare names than for cornmorl _,ames although th,- tc.,ta}

number of analogies, strong or _eel:. rerr,ai,_.d ron._;ta.nt; and (2) The :;ystern's criterion for ana-

logical cornp,:lhngneg.¢ wz., too strict The _ections below present the te_t set that tho explc,rat._ry

measurements were b_sed on a_,,J the rr,eas,_rement.,., that were made, together with the recruiting

findintg;. The rnea._ur,:ments ate grouped by whether they were. purely objective, or included a

subjective component.

4.1.1 Tc._t ._.t

'Ihe tt_t _et for this and ghe other _:Xl,,.'rimen_s was dra_'v, from tlJ, D,:,nnrlley corpus, a database

of over 1.5 millicm distinct surnames coveri_,g 72 million housrholds in the US. Narnes in Donnelley
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range from extremely common (e.g., S_trrH: which occurs in over 670,000 households) to extremely

rare (e.g., BOURIMA'¢O_G, which occvrs in 1 household). The number of household,_ that have a

particular name will be referred to as the frequency (of occurrence.) of the name.

Test sets were con,';tructed from Donnelley by ._electiug points of interest along the frequency

spectrum, and randomly samplfi)g an appropriate number of names at each point. If Donnelley had

fewer than the desired number of names at :;ome frequency f, then the names were selected rand,3mly

from the narrowest symmetric frequency band around f that was big enough. The test .,_et for the

objective me_uremcn___ contain.,; 13 exponentially-distributed frequencies: 1, 2. 4, 8, ..., 4096.

The frequenci_ were distributed exponentially because this yields evenly-_p_c,:d measurement.,, of

Anapron's behavior _ thi._; wo._ determined in a pilo_.,,tudy, which showed that Anapron's percentage

of acr_;ptable pronunciations drops linearly as freqtlency is decrca._ed exp_mentially The lest set has

a total of 10,00!) names, wi_h between 250 and 1000 at each frequency. These numbers represent

a t,radeoff between the: cost of runnl_lg the test. and the size of the confidence intervals in the

resulting mea.¢u_ements, Fhc names were chosen to bc disjoint from Anapron's dictionary, since

names pronounceable by rote lookup are unrepresentative of.cy._tcm behavior_

4.1.2 Objective measurements

Objective measur¢ments were made for both the rule-based .and ca.,,e-based part_, of the system. ]?he

rule-b;_sed measurements counted how many ,_l;erator._ were applied by each module _ language.

morphology, transcription, ayllable structure, and stress assignment. The ca._e-based mea-_uremcnts

counted how many analogi.es _'ere proposed: accepted: and rejected, and for what reason, where the

reason corresponds to the way' the analogy :satisfied or failed to satisfy the eonap,:llingncs_ predicate.

All m(:as'arements ;vere broke_ down by name frequency_ to .tee how the sy.ctem'_ behavior changes

a_ _h¢ nmnes get rarer and thus naore difficult to pronounce.

The main finding from th_ o[,jective measurelnents was an effect _errned the analogio_l dechue.

It say:; that as nan_e frequency decrea_es, the number of b_gl,,ly plausible analogies to the name

deeret_ses, where: a highly plausible analog, y is one with a very high similarity score (this notion

will be' made more precise below). Figure 10 ::hews the trannrriptiol_ da_ a on which the analogical

decline; is bated. It plots the number of transcription analogie:_ as a function of name frequency. It

is split inlo two graphs --- one for accepted analogies, and one for rejected anah_gies The ae,:epled

analogies in turn are broken down into two reasons for .aeccptm|ee, denote5 siq,¢cant, a.nd higMy

plausible. These correspond to which of tl_e two disjunct.s the ar.alogy _atisftes _n the las_ cl_u._e of

dm definit ion of con|pellingne,:s _ The definitic, n _,f ¢oml,e]lJ_tg_es._ is rep_.ated here for convenience

Co_,pellin g-i,( A )

-imilarity-:.core(A) > S.q0

antt accuracy(A) :> Ao

and (signifi¢_ncefA) > .qo ov ,;imilar_ty-_corc(A) _2 SS._)

t_ An_doltte$ t_ntchhtg both d_*jw_ct_ are comated t_s i',J_hl)' pla_sibh. _ thi_ _'fl,,ct_ t hs* t_y_t_.rn'._proce..,_,mg ^f _._¢h
anal_gi,_, hfte_ lt_okint[ at their _iufilatily _cor_: a_d accuracy, the aytt¢m ¢le.,'|t,re_ them ee,mp,-Iling [or r,-a,_c,t_of high

plattMbillty. It ha_ m) t_on tt. eh,.ck furth_.r v.herher they a*,' al_o -,igmFi,:a_¢
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Figure 10: Number of transeription analogies as a function of name frequency. Ead_ of the four
curves plots the number of analogies that were accepted or rejecl.ed for a particular reason. The
nunxber of name:_ at ea,zh frequency h_-_ been scaled to 1000.

Since highly plausible analogies match the lasr_ disjunct of _his definition, _.hey can now be seen to

be tho_e compelling analogde_ whose similarity score is .%% or greater. Rejected anMogies, like the

accepted analogies, arc broken down into two groups, this time for _,he two re_ons for rejection:

znaccurale, and ",_nsuppor'h:d. These correspond to whether the analogy failed to sati._fy _he .,_econd

or t.hird conjunct; of compellingness. 12

1'o test for upward or downward trends in these curve,;, a Spearman rank-correlation te.,:t [Daniel,

1990] was run on t_ach. The resull,_; were that the curve of highly" plausible a.nalogies was found

to deo-e _ase (p(rs) < 0.01, p(D) < 0.01), but no other significavt trend was found. This means

that the _ystem found fewer highly plausible analogies for rare names. Note, h_wever, that this

does not mean _hat c.'L_e-haaed re_,.;oning is useles_ for rare name_ -- it _s mere.y les:: effective

at finding highly plausible analogie.,.. In fact, the number of "normal plausibility" analogies does

not decre;_se significantly, as demonstrated by the abs_'nce of a deere,_ing trend in the. curve of

significant analogies, wlfic}_ counts all accepted an:dogies other than highly plaumble onea. A further

inw_tigation of the analogical de.zline can be found in Golding [1991].

4.1.3 Subjective zneasure.m_nts

Sul,,iectivc measurements of the ._yslem's behavior were made not on the 10.000-name test set de-

scribed above, but ozt a s,:aled-do_,n 1,00(t-name version. Thas was necessary to make it f,.','_ible

t3Amdogies that fail to satisf._ be, th ,'¢.njmwt_ at, counted a_ ina,;cul ate. again because thi_ can be determined fi'om

the iimil_rity scot'e and tu.'cttracy _}_he_ut havln£ to _e_t whether they arc _m_uppoJtc_L Al_o, t|,,_re i_ t,_du_wally a

thlrel renaon for rejection. _mpl._us;&h, .for ¢ma|,'_gie- that h_tve _ *h_fil_rlty scot,: ln_ that ._9, and thals f_i| to e_ti_fy

the first co_ju_ct of cornpellin_e_. M,ast i_upl_u_ible anM_,gie_ _r_, never Ireneratcd by Ant_p(_lt; (ire _,y_tem h._ been

optimized to not retri-_ve the very di_tealt a_Mog_ thai we_uld glw, ri,_. to _udt _alo._:h_ Cvnscqucntly, tmplau._ibI,

_amlogi(u c_m_(,t b¢ ac(ur_tely counte¢:, and ra'e olnitted fl'Ot'll FiKure 10.
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to obtain human judgements. The 1,000-name test set had 250 names at each of four (roughly)

exponentially-distributed frequell.cie,_: 1, 3Y., 256, and 2048.

3-he subjective measurements consisted of judgements, for each name: about the acceptability of

the. fol.lowing: the overall pronunciation, the individual transcription and sires,; opera.tor_ applied,

the choice of language/morphology analysis, and the anatogie.q proposed (whether accepted or re-

jected). The judgements were made by the first _uthor. To facilitate thi_ rather laborious process,

a 3udgement editor was used, which provided a graphical use_ interface for entering or changing

judgements about a name. The editor al._o verific:d thal. the judgements for a name _ere complete
and consistent.

The main resuh, of the subjective mea, urements was that errors of analogical omis._i.on (help-

ful analogies that were missed) were found to greatly outnumber errors of _,'alogical commission

(hz.rmful analogies drawn). This suggests that the sy._t.ern's analogical cornpellmgnezs criterion may

have been too strict. "lhi_ could be fixed by lowering the system's thresholds 13. thereby relaxing

the compellingness criterion, or by re-working the similarity metrics to allow better digcrimiaation

bet.wecn good and bad analogies.

4.2 System comparison

in the second pha_;e of the evaluation: Ana.prola w,., corapared _sitb a variety of other name-

pronunciation systems to see how the performance of the rule/ca,':e hybrid method compares with

that of alternative approacheg. Seven other system._ were _._ed in the comparison: three state-of-

the-art commercial ._yst eros, two vers.ion _ of a raachi.q,.-1,.;_rnJng system (N ETtalk), a,nd two t,umans.

The comraercial systems are t,he same one.,, mentioned earlier (see the: beginning of Section 3): /.he

Orator TM system from Bellcore and DECvoice from DEC, both oi" which are rule-ha.seal, and TTS

from l:lell Labs, which is case-based. The two version,._ of NE'ftMk are BP-legal, which is the vanilla

version of NETt.alk [Sejnowsl:i and Ro:;enberg, 1987]. and BP-block, which is NETtalk enhanced

with a block-dec0dmg post:processor [Diett,_rich et al., 1990]. The sectiom_ below sketch the test set

design, and results of the .¢xperirnen_ A more complete presentation carl be found in Golding and

Ro:.enbloom [1993].

4.2.1 Test set

The t_:_t _ct for the' system comparison wrt-. gimilar to that u.c:cd in *.he .¢ul',jectivt mea.g_Jrements.

except that: (1) only 100 nanle_ Iro_ 25(_) w(:re chosen nt each frequency, to, reduce the Imrdc:n on

the human test subject,q and (2) the test. set, was no longer constrained to be disjoint from Anapron's

dictionary, as, art unbiased me.as_ren;cnt of sy:.t_m pr.rformance include3 nmn_s bc, th i3 and out of

t,he dictionary.

l'_'l'h,, re,._dta of the thre:shr,ld m,sdificat/6n study _uggttt that the mo,t e_. "tire thteshdd to It,wet would be 5St:
tee Sect,ion 4.3.
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4.2.2 Design

Bccau._e there is no objective criterion of eorr¢:e.tncs_ for nan,e prommciation_: a pronunciatio_ was

evaluated by asl:izlg human test subjects whether they found it acceptable. Each sy.,_tem was run

on the 400-name test set described above. The _utput of the computer systems w_ collected in

the form of wril, len pronunciations; the output of the human prc,nouncers _a,_ tape-recorded and

transcribed as written prc_nunciations. The two versio_ of NEq'talk were trained on Ana.pron's

50(}O-name pron_>uncing dictionary.

A cassette tape was made of the pronunciations generated by all systems. This involved, for each

name, elirainating duplicat.e pronunciations, and permuting the re_'lamin_; pro_:unciations randonfly.

The o_'der of name_; in th,. test _.et was permuted randomly _ well. To hide the identities of the

systems, all pronunciation:; were read by the DECtalI: speech _vnthesizer. A panel _f 14 human test

subjects listened to the ca:;sette tape arid rated the acceptabilit.y of each pronunciation.

4.2.3 Results

The main re.';ults o[" tt;,e system comparison appear in Figure 11. The narr_es of the c¢,mmer_:ial

systems and human_ have been omitted as their iderJtitie.'_ arc not relevant here. Th,_ figure give_ the

percentag,_ of acceptable scor_:s, out of a to_al of 5600, a_-arded to each system. (5600 = 14 judges

× 400 pr_munciations) The scores are broken down by name frequency. The figure includes an

imaginary niuth sy.,;tem, labelled Ul:,ound, which gelaeraw._ for each name _he prcmunciatioa that

received the g.reatest number ¢,f acceptable votes from the judge.',. [I measures the degree to wh.ich all

judges cal_ he pl,.ased ._bnu]tal_eou_lt', u_ing.iu_r the prcmunrialiom_ available from the eight syste_,s

tesl ed.

Figure !1 _hows that Anapron performs almost at the level of the commercial :;ystem.% a.nd

subste,_tiM]y better tha_ t]he two versio_,s of NlgTI.alk. Also, although the eight systems seem to hit

a performanc.e z:_ymptc_te at 93_7¢, the Ubound system demon.ctratcs that it is pos.cible to score at

lea_;t 97%. This _uggesl_ that there is room for improvement in all sy,;tems.

To detect whether the ,Jiffcrence._ between Anz.pron and the o_her sy._tems were stati._tieally ._:ig-

nificant, an ANOVA was run, fe,llo_'ed up by a Bonferroni multiple comparison procedure The

res_flts are shows in Figure 11 as annotations on the scores in the table. Overa]l. Anapron outper-

formed the two ver._ion_ of NETt.alk. b,_t the commc_rial systems, hutnan._, and Uhound did better

th_n A.napron. _Iowever, i._x sore-_ frequency ranges, a s_gnificant differeuee bet_ee_ Anapron and

certain commercial systems could not be d_:tected.

Given Ihat Anapron is able to exploit lwo _,mo_'ledge sourre._, while the _Jther computer sy_lem_

use ju.,.t one, it _may bc s_rprising that Anapron did n_',l ou_perf¢_rm the commercial systern._. It

should be borne in mind, h,_wever, that Anapron', knowl_.dg_, sc,urc,_s were put together as rapidly as

possible from whatever rulc_ and c_,'._ could b,: _btained -- b,_¢,ica}ly th* M1Talk rule_ and a b,000-

same pronouncing d_ctionar_ The c0rnmerc_a] .,:ysleta:;, m c_)au_ast, u_,e extremely high-quahty.

and unfortu:,atcly proprietary, k no_'ledg_.._ourcea -- carefull.v-tuned rule :,eta for tbe rule-ba.,.e.d

syslems, and a dictionary of over 40.0f10 names for the c_-L,ased system. Anapron w,_s ir, fact

O

Q

®

O

O

e

O

0

O



33

System Name fl'equeney Overall

2048 256 32 1

Ubound 98 .Jr 98 q 98 + 96 + 97 +

tluman 1 97 -4- 93 4- 93 + 88 + 93 +

Human2 98 -+ 94 4 94 + 86 + 93 +

C-oral 97 -+ 95 + 93 + 90 + 93 +

Corn2 96-+ 90÷? 87+? 86+ 90 +

Corn3 96 + 9,l + 89.4- 78 --? 89 4-
A.naprcm .91 88 85 80 86

BP-block 84 - 83 - 77 - 69 - 78 -

BP-legal 78 - 72 - 66 - 52 - 67 -

100"

2D4g 256 32 1

Name frequency

_-igure 11: Percentage of acceptable scores for each system, broken down by name frequency. The

data are shown as a table and _Ls a graph. Scores in the tabh: have a plus sign (+) if higher than

AJaapron's score, or a minus sign (-) if lower. All differences are significant at the 0.01 level, except

those marked with a quc, tior_ mark (?), which are not signilicant even at the: 0.10 level. The humans.

were omitted front the graph to avoid clutter; their ¢,,rve_ would lie between those of Ubound and

Com2. The curve for BP-.legal w_ truncated when it ran off the bottom of the graph.

found to improve on the performance of its rules or cases alone (_ee Secr.irm 4.3): it would appear,

however, t,hat in the system corrtparison, this imr,rovem,.'nt wa_ ou.twcighed by the mediocre quality

of the rules and cqses used. Thus while .£napron provides a proof of concept of the architecture

-- a demonstration that combining rule._ and c._se.,; improve-_ performa.nce _ actually using ';_his

improvement to outperform commercial syst(:ms must wait until such lira,: as commercial-qualiLy

krmwledge sources can be obtained for tes_.ing.

4.3 Modification :3tudies

qo gauge the _ontribu(ion. of Anapron½. components to itR overall perf.orraance_ a set of experiments

was performed in _vldch various components _er¢ modified, and r.h¢: effects on system i)erformauee

were obs,.'rved. Five guch studies; were rm_, modifying: rule, afld eases, thro:_holds, language knowl-

edge, morphology knv._vledge,, and syllabD-structurc knowledg,:. The f_rst study -- on rules and

cases _ directly investigated the effeet_ of combmiug rule-based and ear,e-based r,.,asoning. It pro.

vided thv key result that the system achieved higher accuracy by ¢omhining rul(.s and ea.,.es thau it

could have achieved with either one alone "Ihe threshold study tested how sensitive the system's

performatace was to the thre,_hold ._etting_ u.¢ed m th,t d_ finition of analogica} compellingness -- i.e.,

SSo, SS+, A0 at,d So. Extreme rais,ng or lowering of an) one rhre._hold was gem'rally f,'mml to hurl
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accuracy, although lowering ,5",.';0sometimes improved accuracy at the expense of increasing run time.

The remaining three studies conce,'ned the ._ystem's support, knowledge --- i.e., knowledge needed in

support of the two top-level tasks: transcription and stress. Degrading the languag_ or morphology

knowledge m_fficiently wag found to have a subst, ant, ial negative impact on system accuracy, while

degrading syllable-structure knowledge had a relatively minor effect. These studies a.re described

more fully in Gelding r_1991].

The rule/case modification study [Gelding and Roseabloom, 199t] is the subject of the rest of

this section. The test seL design: and results are discussed bdow.

4.3.1 Test set

Like the system .=ompaJ-ison. the rule/case experiment required a great deal of human effort in the

evaluation. The test se_ was therefore made the same .size as in the .system cmnpa.risc, n -- 100 names

_t e.ach cf four ft.equencies. The only difference was that, _._, in the exploratory measurements, the

test. set was constrained to be disjoint ftcm Anapron'.,; di.:tiorm?y, since again rote Iockup behaviors

_'ere not of interes'_.

@

O

@

@

4.3.2 Design

The rule/ease study involved independently varying t,he strength of the systen,'s rules and cases, t:or

each combination of rule strength end case strength, the system was run on _l_e 400-name _e:;t set,

and i_s accuracy and run time _ere re,zorded Accuracy was measured a2_ the proportion ofacceptaMe

pronuneial;ions g,._nmrated by the :;ystem, where acceptability w.as judged b.v the fir:;t author. TM All

.judgen'tents were cached m;.d re-u.,,ed if a l;ronnnciation recurred, to h_.lp enforce consistency across

trials. P_un time wa2_ the average time, in seconds, for the s.vs_em to pronounce a ttame in the test

set. The system, _vritte,i in CommonLisp. was run on a Texas [_strurnents Microexplorer with 8M

memory.

The rules were set to four ditterent str,mgth_: 0, 1/3. 2/3, and 1. A sr.length of 1 mean_ all

transcription and stress, rules were retained in the system. Strength 0 means that all rules were

deleted except defa_,lt rule:;. The default rules tra.nseribe a letter ,>r _sign _tress if no other more

specific rule rnat.:he.,;. The default rule_ cannot b,._ deleted, other_ise the system would be unable

r,o g;enerate a colnplete pronunein.tion for so,,._, name.s. Re_,xining the default rules correspmtds to

keeping 137 of the 619 transcript,ion rules and l(i of the 21} _tress rules. Rule strengths between

0 and 1 correspond to retaining a proportional number of non-default rule_, in th,:. system. Each

strength is obtained by deleting a ranclcma sul',r,¢.t of the non-defauh rnlc:_ from the next higher

streng_,h.

The cases we,re set l,o six .ctrengths: 0, 1000. 200!1, 3000. 4(100, and 5000. "Ihe strength is just

the number of names that were kept in th., e,x_ lib-_ry. Again. each weakening of the ca_e library

prodlwes an arbitrary subset of the previous e_e library.

leq'he _'t¢ lauthov '_,_.t _u_ unutua._y ]lartlh judge, t|ttls the _cor¢,. hele I_le l_,,t _t'cclly COml,_'able I;o tho_¢ of th,"

f._'$t+.'nl ( OJiIl)txl_i!,oll
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Rule Caa:e s(reugLh (× 11300)
strength 0 1 2 3 4 5

1 56 65 65 67 67 (38

2/3 46 54 56 56 57 59
1/3 33 39 43 44 46 47
0 19 27 32 34 35 36

• _::_:,

. @ i

0 Rules

Cases

Figure 12: System accuracy, shown as a table and as a 3D graph. Each value is the percentage of
na.me_ in the test set for which the system prodvced an acceptable prommciation.

4.3.3 Accuracy results

Figure 12 shows system a.ccuracy a._ a function of both rule strength and case strength. The main

r_',ult is 1;hat accuracy improves monotonically as rule or ca-_e strength in,:rease.a. The t.ota.I improve-

merit in aco_racy due to adding rule_ is bet_eerJ 32% and 38% of _l_e t.es¢ set (depending on cease

strength). For cases it is bet_een 12% and 17% (depending on rule strength). 2"his shows that rules

and case.; each contribute to the system'.,, o_erall a_enra¢.y It i:_ only by having both knowledge

sourc,m that the system i:; able to adlieve its best performance.

4.3.4 rl,un-time results

Figure 13 gives the re-,;ult.s on run time. The int(:resling point here is that ,xhen the case library is

large, adding rules to the sy:stem actually dec;ee_ rul_ t.ime For example, with the case library

at size 5000, increasing the r_les from strength 0 to 1 lowers run time from 10.2 to 7.2 seconds per

n_me. The reason is that adding rules to the sy'stem improves ¢,he ow:ra]l accuracy of the rules.

barring .-.ociopathic effects. When the rules are more accura;e, they will have fewer exceptions.

Tiffs translates into fewer negative exemplars, and thus fewer c,pportumLieg to draw analogies. "I-he

foregone anMegie._ result in a ¢orre__Fonding ._aving._ in run time. In ._hort, adding rules to the sysr, em

reduces Ihe load on the CBR e,)mpone;lt. This deInoustrates that RBR and ('BR do not me_ely

e×isg side by sidle in the architecture: they interact beneficially.

5 Related work

A numher of other m,_th,)d._ haw I,_.en prrqm_,::d fc,r coml,ining RBR and CBR. E_.ch method is

designed around a particular set of knob,ledge requiremen'.s: for instance some methods expec|

i_,,tel,endent rules and cases, while othrr_ starw with .jusl onr knr, wlrdge :_ource anti deriv_ th_ c_ther

from it. Methods also differ in their al_proach to integrating rules and ca_,es; st)me focus on I,,)w .and

v_'hen RBR and Ct/R can each l,e t,rofitabl_ in:'okecl, while other,_ concentrate on how to reconcile
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]_ule Ca_c.t_'_trength (x ]0f)0)

strength 0 ] 2 3 4

1 [.3 3.(} 4.1 5.2 6.3 7.2

2/3 12 3.1. 4.4 5.8 7.2 _.5

1/3 1.1 3.0 4.4 5.9 7,6 9.3

0 O0 3.(} 4.5 63 8.? 102
0 -'-'__. ...... 7 _/Rule$

Ca._s - -_,,'

Figure 13: $)'st(_m run time, shown a__ a tahh: and a) a 3D graph. Each value is the average time

(in _econds) "for the s)',_.tem to pronounce a name in tl-,e test set.

conflietinf; results of RBR and CBR Figure 1,1 orsanizes the met}:.od,, in:o a h_erarchv ao:crdmg to

the_ differen ees.

The first branching point tests v,,_erhel the r_les and c.x_e:, user] b v the method are dep-.ndent

or independent. If the tides and cases are dependent, i_ nlt.a_s that one _'a._ d_riwd frr,m the

other. Such methods are labelled a._ efficicncy-ir_proving; their primary motivation is to express

their knowle,jge in whatever form will rriake pr(,Ll'.'m solvinl:, most efficient The re,ethods _i*h

independent rules and cases aze labelled] a:_ accuracy-improving, thr pr1._n_ry motivation here is. to

maxirldze problem-solving accuracy by exploiting multir_le knowledge sol:ree__.

Tbe effi¢iency-improvirag methods can be further broket_ dov_ n aceordl ng *.o aLich of their knowl.

edge sources wa_: derived front wbieh. Mc,.¢t CBR systems tl',a_ include a rule component have cases

tha.t are derived from their rules. "lhe cases are recordv of Low the rul_* we_ apphf d to partlcu

lar examples encountered previously. P,v re_._oning from e;L_e._ the systems bypas_" _he potenttall)

ler, gth3 proe(-_ of solving a new problem from scrat(h via the rules. For example. ('ASEY [Kototi

19_,8] works in the domain of heart-failure diogt_osi-. It has a corf_l.l,'le 'bu r slow tee ,:>f rul-* --- in

r_he form of zt c_.usol model -- ft,r diagnc_sing heart failure:- When given a eew ease to diagnose.

it tries to relate the' caxe to _. similar case diagnosed previ(_usly When :t can find such a ett._ _t_

answer usually agrees with _-hat the causal mod,q would have said, bu'_ is _btain-.d an average of

two order:; of ma.gnitude faster. PRODIGY/ANALOGY [\'eloso. 1992} cn_ l', rvgarded a._ a gen_ ral

archite'cture for combitda/.; RBR an,] CBlr( to _mprc, ve efficiency PRt')I'._IGY/ANAL()(;Y's equix.-

ate:at of rule-ba._ed rez.soning is problem solvir.g via searcL ItS version of eas,.-ba._d rea._ouing i.¢

derivationM analogy [(Sarbouell, 1986]

]he s.vatems whose rules are derived from their cases extract the rule_ by some g,eld'ral.zat_on

procedure. The nys;em:_ must still keep the ca_es around, beraa_ th_ i_ re:lee do :'mr eneo2e al; of the

knowlcdgv in th,: cases. The rule.t it'* t|,e_e s)':;tero._ can serve various pl_rpcses such as et, al.hn/; a

rrlore compact repre_ntatton of the da'a: a.,. xn Quml_n and f£i.,'est [19£.qi ¢r pro,tdtr, g rnore e,qictei,t

acce_ to the ca._<_, o._ m Daedalus [Allen and Langley. 199,¢,

Sy.,.tem_ utilizing independe:,t rule_ anti cases are /finch el¢,aer il, _,p:l',| I,, Ana|,ir n hg:,tn th_

O

O

O

®

O

O

®

O

O



37

RBR/CB_ Hybrids

l
f I

Efficiency-improving Accuracy-improving

l

[---L--1
Case_ derived Rules derived Emph_Lsis on F2mphasis on

from rule_:: from ca._,,_ invocation combination

®CASE'Y • Quinlan _,CA B A RET

®PRODIGY/ and Rive._t *GREBE

ANALOGY ® DAEDAI.US ®IKBALS 11

• FRANK

r
._e.r -_: at.S(.

kaowledge

• MA1RS

1
f I

Weak Knowledge-based

m,_thod reel hod

• CELIA [

• Quinlan

l ---I
Similarity + Simila.rity 4

n,eta-knowledge other ea._e_

• DANIEL ®ANAPPON

Figure- 14: T.xxonomy of methods for combining RBFI and CBR F_,xarapk_ of systems that use each
method are listed at th,, I_.af _od(.s.

systems fall into two groups. The first, groul., emphasizes how aJ_d _v|_en _,o revoke the I'[BR and

OBR .:.omponen(:s; the second group empha,_izes how to combine the r_s.ult:._ once the components

have been invoked.

Systems that ernph,'_i:,.e invocatior, include CABARET !Rissland and ._Skalak. 19911: GREBE

[Branting, 1,991], IKBALS I1 [Vossos et al., 1991], and FRANK [gissland et al., 190,3] These

systents are designed to gather evidence to support a user's positio.. CABARE'.[', GREBE, and

IKBALS II work in the domain of legal rea_,ni:_g. ¢_nding support for one side or the other in a

legal case. FRANK ha_; been applied to the task of diagnosing back ir_jurie._, emd generate._ medical

report.; reflecting the user's expo._itory gord._ (e.g. dow,pleq the .se.riousnes:_ of the injury: or give

a balanced account of the eviclence). I3ecause these syslerns are not intended to make an actual

decision _bout whether the user's i,osit.ion i._ tight or wrong, they do not have to resolve conflicts

bet.ween lq.Blq, and CBR; tt,ey merely repot(, all of the evidence. The effort in these systems therefore

goes not into combi_fing the results of RBR and CBR, but into determining when RBR and CB[{ can

each be profitably invoked to contribute to the target problem. CABAP_ET u_,,._ a ._et of heuristics

for this purpose, such as "If a rule fhe._ witl_ an unde._ired conclusion, hLvoke ('BR go find ,.'_es that

discredit the rule". GREBE uses a control sl, rat,..gy that calls on CBR to operationallze abstract
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ruh; ai_tecedents, and calls cn RBR to establish and elaborate matches betw_,elj a source and target

case. IKBAL$ II starts with tl_e rnlea, only invoking CBR when it encounters an open-textured term

that cannot be interpreted by further rule chaining_ Ft_AtNK use-_, black_ooard-based opportuni.,,tic

control to select the most appropriate reas._rsing method to apply to a particular subgoal.

In _he second group of sy:;tems, the focus is on reconciling the conclusions of RBR and CBII..

The reconciliation can be done either by a weak method -- i.e.. a general-purpose method that

does not r.equire knowledge of the domain -- or a knotvledge--ba-__ed method. CELIA [Redmond.

1992] and Quinl,om's method [Quinlan, 1993] are two exarnpl_ of using a weak naethod. CEL]IA is a

learning apprentice in _,he dornaiv_ of automobile repair. A central part of the system's function a__

a learning apprentice is to watch an expert mechanic and predict the expert's nexl step. Prediction

is done, using two know, ledge .,;ources: abstract general knowledge, and ¢_cs. The abstract general

knowledge is that of a novice mechanic, and i:; thus assumecl incoclplete and buggy. The cases, in

eontr_,;t, represent aztual troublo;hooting sc.qucnc_ by an e:<per t: and are considered highly reliable.

7o predict, the expert's ne_:t step, CFLIA applies its buggy model, and, independently, looks for an

analogous ca_.e on _'hieh to base its prediction. If it is able to come tap with a prediction bm;ed

on a case, it listens to it. else it falls back on the rule-based r, redict.ion This illustrates a way of

integrating abstract general k_towledge and c_Ls,:_ under the assumption of ino-,mplete, buggy general

knowledge. It is a _eak rneth<_d becaust, it does not use dorr, aill kt_owledge to decide between rule._

and ca.ses, but ro.ther simply l,ref_.rs cases _'henevcr the3' as,; applicable.

Qui.nlai,'s method [Quinla.n, 1993_ aplc.}ies to task_ who_e an_-ver i_ a numeri: quantigy. It uses

an instance-based scheme to generate an initial answer: this steep eorre:;ponds to CBR. The si_nl,lt-_t

instant:e-base,:! scheme is to rt_trieve the source case _:hat is closest (by some metri.:) to the target,

and ju:st copy its answer. Quinlt_¢s met_ho,'] improves on this answer by using a modct. M, I_o add

a correction term; this _tet, corre.qponds to R/3R.. Let:

7' = the targel problem

S = thr.. source ease retrieved I:,y the Jn._tance-based scbera_

A(S) = the an.cwer given by the sour_.e case

M(T) = the answer obtained Ly applyin_ the model to the target

M(S_ -- the answer obtained by apply'ing the model to the source

The pure insl ante-based sche_ne _'ou.ld gi_e the answer A (S) But Quinla_'s ,:ombmed met hod gi _,e._

A(_;) -f. (M(T) -- M (S)). 'I'he parenthesized eorr,,ctic, n term helps, account for difference:: between

the sol,tee and target prob',ems "Ibis answer is thus obtained r:umerically from the re._.ults of lr(BR

and CBR; no do,nain knowledge is r, eeded

Systents that tal_' z knc,wledge-La__ed approach _(; c:,mLinir, g _h_ results of RBR and CBR in-

elude Anapron, MAI/_ [Dutta and l:_omssone 1990], at,d DANIEL. (Bru,,inghaus, 1.99,;] The main

distinct_o_ an_ong tl_e.,t sy:_te_ns is in the I)-pe o/knc, wlo;Ige tl-,ey u_e to d,_ the ct_mbinat_on. MARS

eombi,,(a e_iden,:e from n_ult,ple rule_ and cases using possil',_listi¢ reazonmg This tequire_ that

all of i_s I;nowledg,; Le represented a_ i_os:_ibilkstic rul:.s: thus 31AR5¢_ Flrsl ._t.,-,p i_ to c,',nvert it,
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cases into this form. The conver:fioa requixes certain knowledge about, each case: the feature9 of the

case that are relevant, to its outcome, and the necessity and _ufficiency with which this outcome is

implied. "l'his per-case knowledge enables MARS to represc.nt each c;_e as a rule and subsequenLly

aggregate evidence from rules a_d cases via possibilistic _e_oning. In MAI_S':; domain of mergers

and acquisition.,;, the per-_ase knowledge i,, acquired via natura!-language processing of a document

that explain._ the judge's ruling on each case.

DAN]IEL eonabine_ CB.R and RI3R f,__rlegal h_tcrpretatioa. DANIEL e.xplicif, ly addresses conflicl.s

between rules and fazes by invoking a 7-ule-based coordina¢._on component. Thi_,: component decides

between CBR and RI3R using two sources: domain meta-kno_'ledge --- in particular, the legal

bh_ding force of the rllle-ba__ed and c_.qe-based arguments, and the degree ,_'ff open-texturedness of

the predicates involved --- and the similarity between tLe source a_d target c_._es

In AtJaproa: decisions bel.ween RBR and CBR are b_qed on the compellingnegs of the analogy.

CfJmpellingne_ depend_ on two factors: the similarity between source and target, and an empirical

verification, whi.ch tests tl3e generalization behincl the aaaMgy on other cases in the case library.

It can be seen that MA RS. DAN] EL. and Anapron each depend on different kind, of knowiedge to

arbitrate between P_BI:" and CB]'_.. "l'he sygt, em._ are there.fore app]i,:able in differ,:nt situations: when

it is practical to, do the knowledge engineering of cases I.ha_ MARS requires. MARS is appropriate.

When domain meta-krmwledge is available for evaluating t[:e strength of a case.ba.,;ed or rule-based

argument, a_d when it is practical to specify a similarily raet_ic, DA NI]_L i.s appropriate. When a

large :_upply of ,:a.qes i:_ available for testing out an analogy, and again when a similarity metric can

be specified, Anapron is appropriate.

6 Conclusion

An architecture w_ pres<_ntcd cbr in-,prcJving ,':;t^na accuracy by bringing together knowledge in

two forms: rule_, and cases. :Fhe architecture _s m_,_,!_:d f_r domains that _.re understood well but

not perfectly. "Ihe idea is that in such dornail_s, expert knowledge in the form of rule,; r.an be nsed

to provide a skeletal method for solving problem=,; eases are the:_ used to flesh out the rt'_ethod by

covering idic_syacrasies and special c_o__ that were not anticil>at, ed I:,y the rules. [n addition to a

re_._onab]y accurate and ,.'ffi¢ient set of rules _o _rve a_ a starting point for problem solving, the

archit act ure also needs knowledge m support of Ct3t{ --- namely, a set of cases an d a :,;imi lari ty met tic.

The s,-t of cases shoul,:l be c×tcnsiv,: enough to illustrate tile ,;rror._ in the rules: any unillustrated

problems cannot be corral:ted.

The architecture was applied t,., the task of name I)r,munciatmn. With minimal knowledge

engincerir.g, it vas fo,and to perform almos_ at the level of :.ta_e-of-th+.-a_t commercia_ ._y._tem.¢.

More importantly, a r,odificatic,_, e_:l,erb.vn_ sh,:_wed that its [,erforman,'e was higher than what it

could have acltieved _ i th its rule_g or ca_:es alone. This dem<mgtratt..¢, the capacity of the archltecturc

to improve uprm a pure rule-bas¢:d or c_._e-b_ed _yst_l,_. In additi<m It, the. a<ruracy l, enegits, havmlg

rules t.ogether with the ca:+es all_we<l t_o innova',ions in ('BI'{ technology: flr.¢_, the rule._ providod a

natural _+ay to intt¢'x the ,:as, s (pre, licti+n, ba_+_d indexmgJ; and _ecotrd, _he? provided a me{hod of
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doing case adaptation, termed "case adaptation by factoring".

The architecture presented here is one datapoint in a hierarchy <ff possible hybrid approaches.

One way to abstract away from its design is to keep the same _easoning components (RBR and

CBR), but to combine them differently. The method of co,nbination could be tailored to whatever

knowl.edge is available in the domain, whether analytic (e.g.. heuristi¢_s about when to believe RBR

versus CBR) or empirical (e.g., examples of previous decisions combining RBR and CBR). Another

way to abstract away from the architecture i_ to replace i_s RI3R component with some other

reasoning mc.thod. CBR then becomes a postprocessor to improve an approximate ans;wcr obtained

by any method of choice. The downsid_, how<tar, i._ tha.t the bane.fits of having rules together with

cases would be lost -- alternative method:; of ca_e indexing and case adaptation _vould be needed.

A final level of abstraction, and the one that is in fact the es._ence of the work presented here, is

simply to combine multiple independent knowledge ._surces to achieve higher accuracy.
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